

Lecture Notes in Computer Science 5017
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Takashi Nanya Fumihiro Maruyama
András Pataricza Miroslaw Malek (Eds.)

Service Availability

5th International Service Availability Symposium, ISAS 2008
Tokyo, Japan, May 19-21, 2008
Proceedings

13

Volume Editors

Takashi Nanya
University of Tokyo
Research Center for Advanced Science and Technology
Tokyo 153-8904, Japan
E-mail: nanya@hal.rcast.u-tokyo.ac.jp

Fumihiro Maruyama
Fujitsu Laboratories Ltd.
Software and Solution Laboratories
Kawasaki 211-8588, Japan
E-mail: maruyama.f@jp.fujitsu.com

András Pataricza
Budapest University of Technology and Economics
Department of Measurement and Information Systems
1117 Budapest, Hungary
E-mail: pataric@mit.bme.hu

Miroslaw Malek
Humboldt University Berlin
Department of Computer Science and Engineering
12489 Berlin, Germany
E-mail: malek@informatik.hu-berlin.de

Library of Congress Control Number: 2008926633

CR Subject Classification (1998): C.2, H.4, H.3, I.2.11, D.2, H.5, K.4.4, K.6

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

ISSN 0302-9743
ISBN-10 3-540-68128-0 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-68128-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12270767 06/3180 5 4 3 2 1 0

General Chair’s Message

On behalf of the Organizing Committee, I welcome you to the proceedings of
the 5th International Service Availability Symposium (ISAS2008) held in the
Research Center for Advanced Science and Technology (RCAST), University of
Tokyo, the youngest research institute of the oldest university in Japan.

Service availability is a vital attribute of networked computing systems for the
information society to make people confident in being able to trust the services
provided in everyday life and societal activities. The objective of the sympo-
sium is to bring together researchers and practitioners from different “service”
related areas in both industry and academia to discuss various aspects of service
availability toward the goal of implementing dependable information societies.
The unique tradition of the ISAS series promoting a strong partnership between
industry and academia enabled us to organize an extremely high-quality and at-
tractive program and to provide participants with an invaluable forum to achieve
our goal. The “Komaba Research Campus” in the University of Tokyo offers an
excellent location for this symposium at the heart of Tokyo, one of the largest
cosmopolitan cities in the world.

I would like to thank the PC Co-chairs, Fumihiro Maruyama and András
Pataricza, as well as all the PC members, including András Kővi, for their ex-
cellent job through the entire process of program organization. My special thanks
go to Roberto Baldoni, Professor of University of Rome, and Hiroshi Maruyama,
Director of IBM Tokyo Research Laboratory, for their kind acceptance to give in-
teresting and useful keynote talks. I also express my sincere gratitude to the two
internationally renowned professors, Miroslaw Malek from the Humboldt Uni-
versity, Germany and Kishor Trivedi from Duke University, USA, for voluntarily
presenting excellent tutorials to all the participants.

I am especially indebted to Manfred Reitenspieß, the ISAS Steering Com-
mittee Chair and the Publicity Chair of this symposium, and all the Steering
Committee members including Tadashi Dohi for their constructive suggestions
and invaluable advice for the symposium organization.

I am deeply grateful to the Organizing Committee members, Hiroshi Naka-
mura (Finance Chair), Masashi Imai (Local Arrangement Chair), Masaaki Kondo
(Registration Chair), Hiroyuki Okamura (Web Master) and Kazuto Kamiyama,
for their dedicated volunteer services that made the symposium possible.

Last but not least, let me express my sincere appreciation to the “Inoue
Foundation for Science” and the “International Communications Foundation”
for their generous support in organizing the symposium successfully.

May 2008 Takashi Nanya

Program Chairs’ Message

ISAS, the International Service Availability Symposium series, took place for
the fifth time. ISAS 2008, like each of its predecessors, strongly relied on the
tradition of bringing together academic and industrial experts active in the field
of service availability.

As services begin to influence more and more our everyday life, their avail-
ability becomes a vital factor of society and for business. This year the broad
spectrum of submitted papers represented well a continuous trend in search-
ing for holistic views and solutions in assuring the correct functioning of the
service-based information backbone for the good of our society and economy.

Continuing the tradition established by the past symposia, ISAS adhered to
the core, almost classical, topics while, at the same time, trying to accommodate
trends and new themes. ISAS is traditionally open to innovative technical and
scientific ideas having a potential future impact on the availability of services.

This year the conference received a total of 28 submissions, each of which
was reviewed by at least 3 Program Committee (PC) members. Subsequently,
an electronic discussion was carried out among the PC members until we reached
a consensus. As result of the selection process, 12 full papers are included in this
volume.

In order to promote an important dialogue primarily between industry and
academia, several complementary activities were initiated. Papers carrying an
important message for the industry but still in the elaboration phase were invited
to be presented as short papers.

The program was complemented by two important keynote presentations by
Roberto Baldoni and Hiroshi Maruyama.

In addition to the presentations, a panel of the activities of the Service Avail-
ability Forum served as a bridge between the academic world, industrial appli-
cation development and solution providers. Experiences related to service avail-
ability enabling technologies were presented in the form of an Industrial Demo
Session. The academic foundations of service availability were presented during
two excellent tutorials held by Kishor Trivedi and Miroslaw Malek.

Finally, a special session was devoted to an important open research frame-
work entitled Service Innovation Research Initiative.

The organizers express their gratitude to all who provided continuous support
in organizing the program. Special thanks should be given to András Kővi,
Manfred Reitenspieß, Tadashi Dohi, Miroslaw Malek and Bratislav Milić for
their help in organizing the review process, collecting the papers, editing this
volume and publicizing this event, as well as to our General Chair, Takashi
Nanya, for his continuous support.

VIII Preface

Finally, we strongly believe that this year’s conference continued the tradi-
tions of having a high scientific and technical quality as well as an extensive
dialogue on key issues of service availability.

May 2008 Fumihiro Maruyama
András Pataricza

Organization

ISAS 2008 was sponsored by the Research Center for Advanced Science and
Technology (RCAST), University of Tokyo and Service Availability Forum, in
cooperation with IEICE TC on Dependable Computing and GI TC on Depend-
ability and Fault Tolerance.

Organizing Committee

General Chair
Takashi Nanya (University of Tokyo, Japan)

Program Co-chairs
András Pataricza (Budapest University of Technology and Economics, Hungary)
Fumihiro Maruyama (Fujitsu Lab., Japan)

Finance Chair
H. Nakamura (University of Tokyo, Japan)

Local Arrangement Chair
M. Imai (University of Tokyo, Japan)

Registration Chair
M. Kondo (University of Tokyo, Japan)

Publicity Chair
M. Reitenspieß (Fujitsu Siemens Computers, Germany)

Publication Chair
M. Malek (Humboldt University, Germany)

Web Master
H.Okamura (Hiroshima University, Japan)

Steering Committee

M. Reitenspieß (Fujitsu Siemens Computers, Germany)
S. Benlarbi (Alcatel, Canada)
T. Dohi (Hiroshima University, Japan)
M. Malek (Humboldt University, Germany)
D. Penkler (HP, France)
F. Tam (Nokia, Finland)

X Organization

Program Committee

A. Avritzer (Siemens, USA)
D. Bakken (Washington S., USA)
R. Baldoni (University of Rome, Italy)
G. Chockler (IBM, Israel)
C. Fetzer (TU Dresden, Germany)
F. Fraikin (SDM, Germany)
R. Fricks (Motorola, USA)
M. Funabashi (Hitachi, Japan)
A. Gokhale (Vanderbilt, USA)
K. Hidaka (IBM, Japan)
M. Hiller (Volvo, Sweden)
H. Ichikawa (UEC, Japan)
K. Iwasaki (Tokyo Metropolitan University, Japan)
Z. Kalbarczyk (UIUC, USA)
T. Kikuno (Osaka University, Japan)
A. Kővi (BME+OptXware, Hungary)
S. Kuo (National Taiwan University, Taiwan)
V. Loll (Nokia, Denmark)
M. R. Lyu (Chinese University, Hong Kong)
V. Mendiratta (Lucent, USA)
N. Milanović (TU Berlin, Germany)
A. Moorsel (University of Newcastle, UK)
A. Naseem (GoAhead, USA)
A. Pasic (Atos Origin, Spain)
H. Ramasamy (IBM Zurich, Switzerland)
A. Romanovsky (University of Newcastle, UK)
S. Sekiguchi (AIST, Japan)
P. Sinha (Philips India)
H. Sun (Sun Microsystems, USA)
N. Suri (TU Darmstadt, Germany)
H. Szczerbicka (University of Hannover, Germany)
M. Toeroe (Ericsson, Canada)
K. Trivedi (Duke University, USA)
T. Katsuyama (Fujitsu Labs, Japan)
K. Ueda (University of Tokyo, Japan)
P. Urban (Google, Switzerland)
S. Valcourt (University of New Hampshire, USA)
A. Wolski (Solid Tech., Finland)
S. Yajnik (Avaya, USA)
T. Yamanouchi (NEC, Japan)

Table of Contents

Fifth International Service Availability Symposium
ISAS 2008

Keynotes

The Italian e-Government Enterprise Architecture: A Comprehensive
Introduction with Focus on the SLA Issue . 1

Roberto Baldoni, Stefano Fuligni, Massimo Mecella, and
Francesco Tortorelli

Challenges and Opportunities for Computer Science in Services
Science . 13

Hiroshi Maruyama

Tutorials

Predictive Algorithms and Technologies for Availability
Enhancement . 17

Miroslaw Malek

Achieving and Assuring High Availability . 20
Kishor Trivedi, Gianfranco Ciardo, Balakrishnan Dasarathy,
Michael Grottke, Rivalino Matias, Andy Rindos, and Bart Vashaw

Enterprise System Dependability

Optimizing Security Measures in an Intrusion Tolerant Database
System . 26

Toshikazu Uemura and Tadashi Dohi

The Impact of Unavailability on the Effectiveness of Enterprise
Information Security Technologies . 43

Simon Edward Parkin, Rouaa Yassin Kassab, and Aad van Moorsel

Interaction Faults Caused by Third-Party External Systems — A Case
Study and Challenges . 59

Bogdan Tomoyuki Nassu and Takashi Nanya

Software Service Availability

User-Perceived Software Service Availability Modeling with Reliability
Growth . 75

Koichi Tokuno and Shigeru Yamada

XII Table of Contents

Execution Path Profiling for OS Device Drivers: Viability and
Methodology . 90

Constantin Sârbu, Andréas Johansson, and Neeraj Suri

Analysis of a Software System with Rejuvenation, Restoration and
Checkpointing . 110

Hiroyuki Okamura and Tadashi Dohi

Service Availability Platform

A Platform for Cooperative Server Backups Based on Virtual
Machines . 129

Akiyoshi Sugiki, Kei Yamatozaki, Richard Potter, and Kazuhiko Kato

Platform Management with SA Forum and Its Role to Achieve High
Availability . 142

Ulrich Kleber, Frédéric Herrmann, and Ulrich Horstmann

Automatic Generation of AMF Compliant Configurations 155
Ali Kanso, Maria Toeroe, Ferhat Khendek, and
Abdelwahab Hamou-Lhadj

Service Dependability Analysis

Dependability Evaluation of a Replication Service for Mobile
Applications in Dynamic Ad-Hoc Networks . 171

Erling V. Matthiesen, Ossama Hamouda, Mohamed Kaâniche, and
Hans-Peter Schwefel

Ten Fallacies of Availability and Reliability Analysis 187
Michael Grottke, Hairong Sun, Ricardo M. Fricks, and
Kishor S. Trivedi

Analytical Availability Assessment of IT Services . 207
Miroslaw Malek, Bratislav Milic, and Nikola Milanovic

Author Index . 225

The Italian e-Government Enterprise
Architecture: A Comprehensive Introduction with

Focus on the SLA Issue

Roberto Baldoni1, Stefano Fuligni2,
Massimo Mecella1, and Francesco Tortorelli2

1 SAPIENZA – Università di Roma, Dipartimento di Informatica e Sistemistica
{baldoni,mecella}@dis.uniroma1.it

2 CNIPA - Centro Nazionale per l’Informatica nella Pubblica Amministrazione
{s.fuligni,f.tortorelli}@cnipa.it

Abstract. The paper describes the currently ongoing effort for defining
and developing a nationwide e-Government Enterprise architecture in or-
der to guarantee a flexible approach for integrated application services,
respecting local and central administrations’ autonomy. An appropri-
ate mixture of organizational initiatives, together with the promulgation
of appropriate laws, and the development of innovative technical rules,
seems to be the success factor of the approach. From a more technical
point of view, the definition (i) of semantically-rich service agreements,
(ii) of a repository more complex than a simple UDDI registry, and (iii)
of complementary components for dealing with QoS and security, repre-
sent the core elements of the infrastructure. Finally the paper discusses
the problem related to the monitoring of QoS at the level of the service
execution.

1 Introduction

Before 1999, the scenario of the ICT in the Italian public administrations (PAs)
was quite disomogeneous: there were sectors of excellence in some central PAs
as far as basic and advanced interoperability is concerned, and other central or
regional PAs that acted as almost isolated systems. Basic network services (not
necessarily Internet-based) were outsourced by each PA to external providers
with an explosion of costs and possibly lack of interoperability between basic
services of different PAs. In this context, the “Nationwide Cooperative Network”
(referred to as RUPA [1]) was established in order to provide security and basic
interoperability services (e.g., directory, e-mail, WWW) to the central PAs. But,
even if from one hand RUPA created a system’s vision (about interoperability)
and generated big savings for the central administrations, on the other hand,
during the years it became clearer and clearer that basic interoperability is not
sufficient, and there was a real need for advanced interoperability and application
cooperation/integration between back offices.

The heterogeneity of procedures, data and infrastructures among local and
central PAs has been exacerbated from the political viewpoint. The reform of

T. Nanya et al. (Eds.): ISAS 2008, LNCS 5017, pp. 1–12, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

2 R. Baldoni et al.

the Italian Constitution in 2001 attributed indeed new possibilities for action to
local authorities. Since then, the right to pass laws autonomously represented an
increasingly effective means for decentralization with respect to administrative,
organizational and also technical aspects. But from an ICT management point of
view, this decentralization generated different points of decision, possibly leading
to different ICT choices as well as different organizational processes. This can
bring rapidly to the proliferation of different interoperability infrastructures (a
sort of “spaghetti” connections/middlewares) with the consequent high risk of
inefficiency.

Even though this process of decentralization of competencies and diversifica-
tion of ICT solutions can help in defining and actuating in a rapid way political
objectives (defined by laws) at the regional or local level, it will make tremen-
dously difficult the implementation of political objectives at the inter-regional
or national level sharing local and central competencies. Many examples of such
strategic objectives can be found in the areas of healthcare, employment, reg-
ister offices, tax offices, etc. If not mastered properly, therefore this process of
decentralization, instead of turning out in an advantage for the country, can lead
to a lack of interoperability among the PAs.

Given this context, the issue was to set-up an organizational process, together
with technical solutions, that would allow the development of nationwide appli-
cation cooperation/integration between back offices. Even if Web services are
the technological instrument enabling the solution, such a solution requires (i) a
strategic vision, based on a bottom-up process for reaching a shared PA-wide En-
terprise Architecture, and for maintaining it, and (ii) a deep and comprehensive
technical specification.

The aim of this paper is to outline both (i) the strategic actions, that at
the level of overall governance of the Italian e-Government process, have been
undertaken, and (ii) the enterprise architecture and the innovative technological
solutions that have been proposed for the realization of such a nationwide ,
referred to as SPCoop - Sistema Pubblico di Cooperazione [Public Cooperative
System] . Finally, we look at the problems encountered in designing metrics for
Service Level Agreements inside the Italian Enterprise Architecture as well as
the system to be developed for their monitoring. This is one of the main technical
challenges of the entire Enterprise Architecture.

2 Strategic and Governance Actions

In 2003, cnipa 1 started the coordination of a nationwide bottom-up consensus
operation, from basic telecommunication services to advanced application co-
operation. Different working groups were started with the participation of over
300 representatives of central and local PAs, universities and research centers
1 The CNIPA (National Centre for IT in Public Administration) is a government

agency which depends on the Italian Cabinet (Presidency of the Council of Minis-
ters). CNIPA supports and implements policies delivered by the Minister for reform
and innovation in Public administration.

The Italian e-Government Enterprise Architecture 3

and Italian ICT companies. The outcome has been a set of about 30 docu-
ments describing a technical and organizational nationwide system for network,
communication, basic interoperability, cooperation and security services among
administrations. This system consists of SPC - Sistema Pubblico di Connettività
[Public Internetworking System] and, on top of it, of SPCoop for the application
cooperation among PAs.

The Legal Interoperability Framework. In parallel to the bottom-up process for
the definition of SPC and SPCoop, the Government issued in February 2005
a Law Decree, namely the digital administration code (CAD) (Law decree n.
82/05), that defined the legal interoperability framework, CAD defines rules re-
garding the digitalization of the PAs, grouped in the following sectors: (i) The
rights of citizens and enterprises on Public Administration (ii) Citizens and en-
terprises must be placed at centre of PAs services (iii) Digital signatures and
legal validity; (iii) Contracts, payments and accounting deeds (iv) Development,
acquisition and reuse of software in PAs. Moreover, as far as SPCoop and SPC is
concerned, CAD establishes its scope, the sectors of interest, the governance, the
technical rules of the Italian Enterprise Architecture, and the subsidiarity prin-
ciples among National authorities and local ones. Additionally, CAD establishes
two important principles:

– the cooperation among administrations is exclusively carried out on SP-
Coop, with its tools and according to its technical rules; it has legal value
and no further decree or official publication (e.g., on the Gazette) is needed
(e.g., when defining standard XML formats for data exchange);

– the public ICT managers need to organize their information systems, in-
cluding organizational and management aspects, in order to accommodate
SPCoop rules.

The Italian Enterprise Architecture. SPCoop is not only a software framework,
but also a technical and organizational platform whose aim is to create the con-
ditions for a long-lived legally valid cooperation among administrations. It is
based on four pillars which are leading-edge in terms of technologies, best prac-
tices and organization: (i) formalization, and successive publication, of service
agreements between PAs (detailed in Section 3.1); (ii) definition of a federated
identity management system for access control; (iii) definition of the metadata
about the effective data to be used for cooperating, of the semantics and of do-
mains’ ontologies; (iv) open and continuous update of the SPCoop model, by
taking into account the latest progress in technologies and standards.

A first set of documents including (i) the overall vision, (ii) the SPC network
services and the security model were published in 2004 2. The starting point of
the SPCoop has been the publishing in 2005 of a set of technical documents 3.
2 http://www.cnipa.gov.it/site/it-it/In_primo_piano/
Sistema_Pubblico_di_Connettività_(SPC)/

3 http://www.cnipa.gov.it/site/it-IT/In_primo_piano/
Sistema_Pubblico_di_Connettività_(SPC)/
Servizi_di_interoperabilità_evoluta_e_cooperazione_applicativa/

4 R. Baldoni et al.

Such documents define the model of cooperation at the application level for
national and local administrations and are, under a specific license, freely usable
(e.g., for creating methodologies, software, dissemination, education, etc.). Then,
during 2006, four public tenders have been launched concerning:

– Network services, including VoIP and ubiquitous connectivity. The contract
has been awarded in June 2006 to 4 providers (BT, FASTWEB, WIND and
Telecom Italia). Such network services will form the basic communication
infrastructure connecting national and local authorities.

– Shared network infrastructures, including services for managing the Service
Level Agreements (SLAs) of the SPC providers, the security and the VoIP
services; currently a commission is selecting the partners.

– An initial set of interoperability services of SPCoop, including identity man-
agement, PA Web site/portals creation and management, Domain Gateways
and tools for wrapping back-office applications as SPCoop Web services to
be deployed on the Domain Gateways; currently a commission is selecting
the partners.

– The effective SPCoop framework, as detailed in the following of the paper;
the public tender deadline has been December 2006, and the commission for
selecting the partner is expected to conclude its work by Spring 2007.

Accompanying Measures. 56 regional projects on e-Government, focussed on
network and interoperability infrastructures, has been launched, for an overall
amount of 100MĂ. These projects will provide best practices as well as reference
implementations of the different SPC and SPCOOP elements, in order to direct
the bottom-up approach. The biggest project is ICAR (Interoperability and Ap-
plication Cooperation among Regions), started in June 2006 with 17 partners
including 16 out of 19 Italian Regions. The expected results from these projects
are: the compliance of large horizontal projects with SPCOOP; the complete def-
inition and advertisement of about 50 service agreements, and the beginning of
the definition of about another 100 service agreements; the definition of the core
of an upper ontology and of two specific domain ontologies; finally the definition
of metric for service-level agreement, the design of a SLA monitoring system and
the reference implementation of all the components.

Before concluding this section, we would like to point out how the governance
and strategic actions presented above represent the success element of this chal-
lenge; adopting a common infrastructure for interoperability and cooperation
on the basis of solely technical solutions has proved unsuccessful in the past,
conversely the use of a community approach to realize evolving versions of the
framework and to create a SPCoop “culture” in the PAs seems a better solution.
Such a community is expected to be led by administrations, with the active
participation of industries and universities. This also constitutes an enabling
factor for the overall innovation process of the whole country. The documents
published in 2005 represents a technical road-map for such a community towards

The Italian e-Government Enterprise Architecture 5

the effective SPCoop development, whereas typical community tools (e.g., on-
line forums, development community, the continuous evaluation of standards by
cnipa, etc.) will support the process.

3 Overview of SPCoop Enteprise Architecture

The model proposed for SPCoop is based on the following principles:

– The PAs cooperate through the supply and the use of application services ;
these services are offered by the single administration through a unique
(logic) element belonging to its own information system called Domain Gate-
way. In this way the complete autonomy of the single administration is
guaranteed, as far as it concerns the implementation and management of
the provided application services, as they can be based on any application
platform, being it pre-existent or new, as long as they are supplied through
the Domain Gateway. The fruition of the application services is carried out
through the exchange of messages, whose format is formally specified in the
Italian standard referred to as e-Gov Envelop. Such a standard is basically
an extension of SOAP.

– A service works on the basis of an agreement among at least two subjects
(supplier and client); such agreements have a technical basis and an institu-
tional/jurisdictional basis. These agreements should be formalized in order
to support the development and the life-cycle of services in a (semi-)auto-
matic way. The agreement specification is called Service Agreement and is
based on the XML language.

– Sets of administrations which need to cooperate in order to provide compos-
ite application services form a Cooperation Domain; the services supplied

Agreements
Repository

Schemas/Ontologies
Repository

Federated Identity
Management

Management
Service

Domain Gateway

Administration A

Cooperation
Domain

Services
Service

Agreements

Domain Gateway

Administration N

Services
Service

Agreements

Domain Gateway

Administration N

Services
Service

Agreements

Cooperation
Domain Gateway

Cooperation
Agreements

(Composite)
Services

… … … …

Qualification
Service for
Repositories

Qualification
Service for
Gateways

SPCoop Components and
(soft) Services

Monitoring
Service

Fig. 1. The components and (soft) services of SPCoop

6 R. Baldoni et al.

by such a domain are externally described through Service Agreements, and
internally by a specification describing how the different PAs concur to com-
pose the final service, referred to as Cooperation Agreement.

It emerges that the cooperation model of SPCoop is organized as a Service
Oriented Architecture (SOA) [2]; but even if the basic aspects related to a SOA
are well defined under a technological point of view, conversely it is necessary to
extend the advanced aspects in order to make the architecture suitable to the
specific e-Government scenario. The reader should note that all the service archi-
tectures 4/SOAs need a neutral element 5, with the goal to mediate between the
different subjects cooperating for the service supply/use; the SPCoop frame-
work includes a set of infrastructural components to be used to simplify these
operations (e.g., retrieving a service trough automatic categorization, managing
digital identities, etc). They are represented in Figure 1:

Agreements Repository is the software component used to register and to
maintain the Cooperation/Service Agreements. It can be considered as the
“database” of the cooperation. This component offers functionalities for the
registration, the access, the update and the search of the agreements. The
UDDI standard is the core of this component; however this standard does
not offer all the required functionalities, therefore it has been extended.

Schemas/Ontologies Repository is the software component offering func-
tionalities to deal with the service and information semantics, in order to find
out services that are more suitable to provide required functionalities. This
component acts as a structure to store ontologies and conceptual schemas,
offering functionalities of registration, access, update and reasoning on them.

Federated Identity Management is used to authorize and control the access
to application services over SPCoop; the federation is needed to reuse the
already in-place identity management systems of regional and national au-
thorities. Integration is be done through specific interfaces supporting SAML
v2.0.

Monitoring Service is in charge of monitoring the respect, by the different
services, of the Service Level Agreements (SLAs) declared in the Service
Agreements. Its development is planned for the future (i.e., it has not been
included in the currently active tender), as standards and technologies for
the definition and the enforcement of SLAs (e.g., WSLA or WS-Agreement)
are not yet considered mature.

In addition to the previous components, a set of (soft) services, i.e., func-
tionalities that need to be provided through different tools (either software or
managerial) in order for the infrastructure to be effective, have been defined:
(i) qualification services for both the repositories and the gateways, i.e., coded
procedures for certifying that the components are compliant with the SPCoop
technical rules; (ii) the management of the whole infrastructure.

4 This is true for both the W3C and ebXML/OASIS standards.
5 Technically called service directory.

The Italian e-Government Enterprise Architecture 7

In the next sections, some technical details on the most innovative aspects of
SPCoop will be provided.

3.1 Service Agreements

A service agreement is a well-specified XML document that regulates the rela-
tionships of an application service between a supplier and a client in the following
aspects: (i) service interface, (ii) conversations admitted by the service, (iii) ac-
cess points, (v) Service Level Agreements (SLAs), (v) security characteristics and
(vi) descriptions of the semantics of the service. The formal and well specified
nature of the service agreement has been done to support the development and
the life-cycle of services in a (semi-)automatic way. Moreover, the public nature
of the service agreement makes easier the establishment of domain ontologies
that allows to aggregate services with similar semantics. Finally, in the context
of a set of public administrations (i.e., a Cooperation Domain), services can be
composed and orchestrated, thus generating other services described in turn by
service agreements.

The application services are supplied/used through Web service technologies
and standards “enforced” by public service agreements.

WSDL can be (and is actually) used to describe the elements (i) and (iii).
The element (ii) is considered as a typical application service requires multiple
interactions between the service supplier and the client, and not all the offered
operations are invocable in every step during the interaction. Thus, in order to
use the service correctly (and therefore to develop correct clients), it is important
to know in which steps operations can be invoked. This is different from the
description of the internal process of a service, i.e., the description of the workflow
implemented by the application service to offer such operations; nevertheless such
conversational protocol can be obtained from the internal process by making
abstractions in order to eliminate the details (internal view) while focusing on
those service functionalities that are visible outward (external view) [3,4]. The
model that describe the conversation protocol through a Finite State Machine
[5], is considered meaningful and simple at the same time. Nowadays it does
not exist a standard in the Web Service arena having the characteristics needed
to describe this element, and therefore a new language, specifically designed
for this purpose, has been introduced, namely WSBL (Web Service Behavioral
Language), stemming from previous standard proposals (WSCL - Web Service
Conversation Language 6) and academic ones (WSTL - Web Service Transition
Language). When in the future, new standards or existing one will mature and
will be appropriate for describing such an element, then the SPCoop rules will
be in turn evolved by incorporating them.

As far as points (iv) and (v), their importance is related to the particular
scenario: application services that offer to citizens and enterprises operations
belonging to the administrative/bureaucratic field, have to declare the supported
levels of quality and of security. Again, at the time of this writing, standards
in these fields are not mature yet, therefore the filling out of these parts is not
6 http://www.w3.org/TR/wscl10/

8 R. Baldoni et al.

mandatory. The accompanying measure project ICAR is currently investigating
these issues and more details will be given in Section 4.

The last point (i.e., (vi)) is introduced as, in an e-Government scenario, many
concepts that should be shared and universally accepted, conversely show deep
differences of meaning among different cooperating subjects, presenting different
descriptions and formats. As a result, the description of the conceptual schemas
and the ontologies related to the information carried out by a service, have the
same importance of the definition of the interface [6]. Proposals for the descrip-
tion of these aspects are rapidly emerging; but the proposals related to OWL
and/or WSML/WSMO (the so called Semantic Web) are not yet considered as
standards, and their relationship with Web services and the related standards
is under investigation. The ambitious aim is to have, in the near future, as few
ontologies as possible, through which to describe the semantics of all the appli-
cation services offered by the different administrations.

3.2 Cooperation Domains and Cooperation Agreements

A Service Agreement describes a 2-party collaboration/cooperation, with a sub-
ject offering a SPCoop application service and another subject using such a
service. A lot of administrative processes do not concern only a single adminis-
tration, but they involve different subjects.

The Cooperation Domain is the formalization of the wish of different subjects
to join in order to cooperate for the automation of administrative processes.
Inside the Cooperation Domain, a responsible coordinator should be identified,
it assures the organizational and technical effectiveness and the coordination of
all involved subjects and of the set of composite application services supplied
outward by the Cooperation Domain. The Cooperation Domain is seen outward
as a service supplier acting like a normal domain of a single administration;
the main difference is in the way its services are designed and deployed: in the
Cooperation Domain they are built by composing and integrating simple services
offered by the involved administrations; whereas for the single domain the supply
of a service is related to applications that are fully under the responsibility of
the single administration.

A Cooperation Agreement represents the specification of application services
offered by a Cooperation Domain. The service supply is characterized by three
basic elements:

– application services offered outward by the Cooperation Domain. From the
user point of view, these services (composite services) are identical to any
other service directly offered by a Domain, and like them they are described
by a Service Agreement;

– application services used internally by the Cooperation Domain to build the
composite services, referred to in the following as component services; they
are described by their own Service Agreements too;

The Italian e-Government Enterprise Architecture 9

– the specification of the way the component services are coordinated to build
the composite service. This specification, needed for each composite service,
can be defined either in terms of orchestration (i.e., from the point of view
of the composite service, by describing the process for the composition and
coordination of the component services) or in terms of choreography (i.e.,
by an external point of view, by describing the constraints on the messages
exchanged among the different component services). In SPCoop, the first
solution, through the use of WS-BPEL, has been preferred.

Therefore a Cooperation Agreement consists of (i) an institutive document,
expressed in natural language, describing the purposes and the normative or
institutional basis of the Cooperation Domain; (ii) a set of references to the Ser-
vice Agreements, describing the composite services offered by the Cooperative
Domain; (iii) a set of WS-BPEL documents (one for each composite service)
describing the coordination processes among component services 7; such doc-
uments can be processed through suitable orchestration engines that are able
to automate the coordination and the supply of a composite service; and (iv)
a set of lists of references to the Service Agreements describing the component
services (a set for each composite service).

3.3 Repositories for Agreements and Schemas/Ontologies

SPCoop provides an infrastructural software component to register and to main-
tain Service (and Cooperation) Agreements – it can be defined as the “database”
of the cooperation. This component offers functionalities for the registration, the
access, the update and the search of the Service/Cooperation Agreements. The
UDDI standard is the starting point to define and implement this component;
but this standard does not offer all the required functionalities, in particular
UDDI defines content-unaware queries, while the Repository will offer the ca-
pabilities for queries about the content of the Agreements. Therefore, specific
software layers have been designed to extend UDDI in order to realize all the
envisioned functionalities. From a deployment point of view, the Repository has
been organized into two layers, namely General and Local.

In particular, it is organized in a distributed master-slave architecture with
replication of information with the following structure: (i) a singleton instance
of the General Repository contains all the information needed for the supply
of the provided functionalities; (ii) N instances of the Repository, referred to
as as Local Repositories, contain (sub-)sets of information, defined according
to different rules (e.g., geographic location, functional relationship, relationship
with the supplier): if an information is in a Local Repository, it is surely in the
General one, while the viceversa is not always true. Updates can be performed
either at the level of General and Local Repositories, and a synchronization
mechanism based on Publish&Subscribe technologies has been devised in order
to guarantee the correctness of all the Repositories.
7 Further evolutions of the Cooperation Agreement will consider the specification of

the documents describing the choreographies.

10 R. Baldoni et al.

The Schemas/Ontologies Repository is the software component offering func-
tionalities to deal with service and information semantics, in order to find

Schema &
Ontologies
catalogue

Application Layer

Q
ue
ry
 &

R
e
as
o
n
in
g

A
p
p
l.

W
W
W

Appl. WWW

VersioningOff-line Editor
Import & Design

concepts

services

SA
SA

C/SA

S
e
m
a
ntic
s

Services/
Cooperation
Agreements
Repository

A
p
p
l.

W
W
W

A
p
p
li
ca
ti
o
n

L
ay
e
r

Local
Repository

notifications

push & pull

Local
Repository . . .

Fig. 2. Repositories in SPCoop

out services that are more suitable to pro-
vide required functionalities. As described in
Section 3.1, the “operational” point of view for
the provided services is not the only possibil-
ity, being sometime better to search a service
on the basis of the type of information that it
carries on/deals with. The ontologies and the
conceptual schemas represent the mechanism
to describe this aspect, and suitable technolo-
gies, commonly referred to as ”semantic” ones,
allow the achievement of (semi-)automatic “rea-
soning” on the basis of such information. Even if
the semantic descriptions are part of the Service
Agreements, they are more effectively managed
as separate elements.

Therefore the Schemas/Ontologies Reposi-
tory acts as a structure to store ontologies and
conceptual schemas, offering functionalities of
registration, access, update and reasoning on
them; it is, in fact, the “database” of the ontolo-
gies and schemas. Figure 3 shows the complex
architecture according to which Agreements
Repositories (one General and various Local) and the Schemas/Ontologies
Repository (unique in SPCoop) are arranged in a distributed fashion.

4 Service Level Agreements: A Real Challenge

The definition of metric for measuring the service level agreement (SLA) and the
designing of a system for SLAs monitoring are among the most difficult chal-
lenges of the entire SPCoop. This is due to the fact that nowadays, standards
with the needed characteristics do not exist: (i) the WSLA (Web Service Level
Agreement) proposal did not become a standard and IBM gave up its devel-
opment, yet showing many interesting conceptual elements and a very detailed
description of the possible metrics to be used in a client-server interaction; (ii)
WS-Agreement is implied in a process of standardization in the limited context
of the Grid Computing, whose final outcome is not yet clear.

The inter-regional Italian project ICAR started to investigate the problem
related to metric definition and monitoring system for SPCoop. From the point
of view of SLA metrics, at the time of this writing, there has been a conver-
gence within ICAR to adopt the syntax of WS-Agreement for SLA description
and to reuse some of the metric that were defined in WSLA. Specifically, the
metrics defined by ICAR are: "response time 5-10" which represents the mean
of two averages done on a series of 5 elementary response times of a successful

The Italian e-Government Enterprise Architecture 11

interactions and 10 elementary response times respectively; the average speed of
data sent by the supplier to a client computed on a weekly base. The percentage
of the successful interactions that executed in less than 1.5 sec. Percentage of un-
successful interactions done on three-monthly base and, finally, the percentage of
unsuccessful operations computed on a fixed number of interactions. According
to ICAR findings this is the minimal set of generic metrics that can be helpful
for the PA to formally describe a large number of service agreements.

The problem of designing a monitoring system immediately turns out in a
decision about the presence (or not) of a trusted third party that executes the
monitoring during service execution and assigns penalties. This presence is rela-
tively easy to be integrated in a client-supplier interaction when the number of
suppliers is low and the SLA to be monitored is the same at any supplier. This is
the typical case of a multiproviders telco system such as SPC. In SPC there are
four connectivity providers (BT, FASTWEB, Telecom Italia, WIND) and there
is an entity that monitors the SLA guaranteed at the communication level to
the PAs. SPCoop can host potentially thousands of suppliers and each supplier
can have a different SLA for each client also considering the same service, there-
fore the presence of this third party becomes unmanageable. Without the third
party, the solution is that client and supplier store in their own the information
concerning monitoring of each interaction. This creates problem of validity of
the data itself. The solution that ICAR is addressing to create a repository that
will be colocated with the service agreement repository and where client and
supplier both deposit the information related at each single operations that will
be then correlated by ad-hoc software to compute the aggregated SLA metrics.

5 Discussion and Future Work

Many European countries have engaged, in the last years, nationwide e-
Government initiatives similar to the one presented in this paper (e.g., [7,8]).
As an example, the e-Government Interoperability Framework (eGIF 8) in UK
is mostly focused on the definition of standard XML Schemas to be used for data
integration and exchange among different PAs. Currently in Germany (cfr. the
IDABC observatory 9) there is no an overall legal framework for e-Government
(i.e., something equivalent CAD Law Decree cited in Section 2), and no na-
tionwide technical framework has been yet established (to the best of author’s
knowledge). For a complete overview of the various e-Government initiatives at
European level, the reader can refer to IDABC [9].

This paper has also focussed on the SLA issue pointing out a clear lack of
standards well suited to e-Government frameworks. The situation is different for
security and ontologies where standards will soon be ready for answering many
of the needs of such frameworks. This makes SLA definition and monitoring one
of the hardest points to be faced in the context of a developing of a nationalwide
enterprise architecture.
8 http://www.govtalk.gov.uk/schemasstandards/egif_document.asp?docnum=949
9 http://ec.europa.eu/idabc/en/document/6508/396

12 R. Baldoni et al.

In the following months, the SPCoop framework presented in this paper will
start the operative phase, through the assignment of the public tenders and the
design and implementation phase – also through open source communities that
are already implementing some components 10 , this phase is expected to be
concluded within the end of 2007. On the basis of the received feedbacks, and
of the continuous update due to the consensus mechanism, it is also expected a
major revision of the technical specifications within Summer 2008.

Acknowledgments. The authors would like to thank all the persons involved
in the working groups that have contributed to the development of SPCoop,
and in particular the Department “Ufficio Servizi di Interoperabilità Evoluti e
Cooperazione Applicativa” of cnipa. Roberto Baldoni and Massimo Mecella has
been partly supported by the European Commission under Contract FP6-2004-
IST-4-027517, project SemanticGov, and the Italian MIUR under the Contract
no. RBNE0358YR_2, FIRB project eG4M.

References

1. Batini, C., Mecella, M.: Enabling italian e-government through a cooperative archi-
tecture. IEEE Computer 34(2) (2001)

2. Alonso, G., Casati, F., Kuno, H., Machiraju, V. (eds.): Web Services. Concepts,
Architectures and Applications. Springer, Heidelberg (2004)

3. van der Aalst, W., Weske, M.: The p2p approach to interorganizational workflows.
In: Dittrich, K.R., Geppert, A., Norrie, M.C. (eds.) CAiSE 2001. LNCS, vol. 2068,
Springer, Heidelberg (2001)

4. Dijkman, R., Dumas, M.: Service oriented design. a multi-viewpoint approach. In-
ternational Journal of Cooperative Information Systems 13(4) (2004)

5. Benatallah, B., Casati, F., Skogsrud, H., Toumani, F.: Abstracting and enforc-
ing web service protocols. International Journal on Cooperative Information Sys-
tems 13(4) (2004)

6. Vetere, G., Lenzerini, M.: Models for Semantic Interoperability in Service-Oriented
Architectures. IBM Systems Journal 44(4), 887–904 (2005)

7. Guijarro, L.: Interoperability frameworks and enterprise architectures in e-
government initiatives in europe and the united states. Government Information
Quarterly 24(1) (2007)

8. Janssen, M., Hjort-Madsen, K.: Analyzing enterprise architecture in national gov-
ernments: The cases of denmark and the netherlands. In: Proceedings of the 40th
Hawaii International Conference on System Sciences (2007)

9. European Commission: Interoperable Delivery of European eGovernment Services
to Public Administrations, Businesses and Citizens (IDABC),
http://europa.eu.int/idabc/

10 http://www.openspcoop.org is currently implementing open source reference im-
plementation of the Domain Gateway and of the Service Agreements Repository.

http://europa.eu.int/idabc/

Challenges and Opportunities for Computer

Science in Services Science

Hiroshi Maruyama

IBM Research, Tokyo Research Laboratory
1624-14 Shimotsuruma, Yamato, Kanagawa, Japan

maruyama@jp.ibm.com
http://www.research.ibm.com/trl/

Abstract. Information technology is playing more vital roles as service
businesses increasingly dominate the world’s economy. Computer science,
which has evolved over the past 50 years, faces new opportunities and
challenges to solve critical problems in services science. This presentation
discusses these opportunities and challenges from a computer scientist’s
point of view.

Keywords: Computer Science, Services Science.

1 Introduction

Computer science has evolved in two directions over the past 50 years. The “core”
computer science areas such as algorithms and language compilers have been
greatly refined, while many new areas, such as bioinformatics, computational
physics, and business process modeling, to name a few, have emerged. One of
the most promising areas among these “non-core” areas where we can apply
techniques and insights developed in the core computer science is “services”
science.

2 Emergence of Services Science

The global economy is quickly shifting labor forces to service businesses. In
Japan, 70% of the labor force was working in the services sector in 2004. This
is in contrast to 25 years earlier, when only 30% of Japan’s labor force was in
the services sector. Emerging countries such as China and India are also quickly
moving to services economies.

Technology companies such as IBM are also shifting their businesses to put
more focus on services. In 2007, more than half of IBM’s revenue was from IT
services, such as consulting, system integration, outsourcing, and maintenance.
The participants in the Global Innovation Outlook Version 2.0 [1] agreed that
automotive manufacturers are starting to view themselves as services companies,
providing services based on the advanced capabilities of their products.

T. Nanya et al. (Eds.): ISAS 2008, LNCS 5017, pp. 13–16, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://www.research.ibm.com/trl/

14 H. Maruyama

Realizing the need for scientific and engineering methodologies for services
businesses and students trained with these methodologies, IBM, along with some
universities and government institutions, proposed establishing a new scientific
descipline called Services Science and Management Engineering (SSME) [2].
SSME is a multi-disciplinary area, intersecting existing disciplines such as com-
puter science, sociology, economics, and management science.

3 Opportunities

There are a number of opportunities for computer science to contribute to en-
hance the value and efficiency of services. Here are a few examples.

3.1 Model-Driven Approach to Services

Businesses today are becoming more loosely integrated. Industries form very
complex value networks to produce their products and services. For example,
automotive companies rely heavily on their first- and second-tier suppliers on
the supply side and on their networks of dealership on the demand side. They
also depend on other companies for non-core business processes such as call cen-
ters and site administration. These business processes are provided by external
companies as services.

The question is how to design a competitive business by connecting these
third-party business processes. The overall business design can become very
complex. Methodologies developed in software engineering to cope with very
complex designs, such as model-driven methods, should be applicable.

The Component Business Model (CBM) [3] is one of these model-driven ap-
proaches. It models the entire enterprise by focusing on the static functionality
of the business units, not on their dynamic behaviors. Whether certain function
should be owned internally or out-sourced externally is determined during the
modeling. Once this is done, the internal business functions are further investi-
gated and implemented using information technology.

3.2 IT Architecture Supporting Services

Businesses are becoming more componentized and reused. Since these compo-
nentized business processes are often partially or fully implemented as an in-
formation system, it is important that these components be easy to develop,
maintain, and reuse. Researchers and developers in computer science have been
wrestling with these problems for many years. The Service Oriented Architec-
ture (SOA) [4] is one of the most recent approaches to reusability technology. An
SOA defines a common set of interfaces of the components so that the business
processes can interoperate and be reused.

The underlying IT infrastructures also need to be maximally utilized. One data
center may host a number of business services running on multiple processing

Challenges and Opportunities for Computer Science in Services Science 15

nodes. These nodes are virtualized so that they provide maximum flexibility
in terms of workload distribution across the nodes. In the cloud computing
model [5], these computing nodes can be provided as services.

3.3 Analytics and Optimization

As more business processes are implemented as IT-based systems, it is becoming
easier to collect data on business behaviors on-line. The data can then be ana-
lyzed to determine the key performance indicators (KPIs) of the business. If the
business is not performing as expected, the data can be analyzed to discover the
root causes. Advances in applied mathematics and computer science, especially
in high performance computing, are allowing real time analysis of huge amounts
of real world data collected by various business processes and allow for adjusting
the business strategies based on the analytic results. Business decision dynamics
extend this idea even further. It simulates the external world’s reactions (as by
consumers and competitors) to several different business strategies and selects
the best one according to the simulation. Agent-based simulation is one of the
techniques to do the required simulations [6].

4 Challenges

The services economy also poses many technical challenges to computer science.
We are focusing on the following two.

4.1 Service Dependability

One immediate challenge is the demand for increased dependability. Dependabil-
ity can be loosely defined as the state when a system is behaving as expected.
The standard security requirements (confidentiality, integrity, and availability)
are part of the dependability requirements. In the services economy, one service
is often provided as a result of a complex interaction among a large number of
component services. In order to guarantee a high level of dependability of the
composite service, each component service should maintain an extremely high
level of dependability.

The idea of trusted computing may help establishing trust relationships among
remote services. For example, the WS-Attestation developed at IBM’s Tokyo
Research Laboratory allows verifying the integrity (and associated QoS charac-
teristics) of a remote Web service [7].

4.2 Understanding and Modeling Human Minds

Ultimately services are consumed by human beings and their values are very
much subjective relative to the consuming party. Thus, maximizing the value
of the service requires understanding the mind of the service-receiving person.
This is not an easy task and demands insights from many other disciplines such
as cognitive science and sociology.

16 H. Maruyama

5 Concluding Remarks – The Changing Roles of
Computer Science

As we have seen, computer science (and information technology in general) is
filling many critical roles in the services economy in the 21st century. Perhaps
the notion of information processing is more pervasive than we may have been
thinking. Peter Denning [8] points out that understanding any complex system,
be it a natural system consisting of many physical objects, a biological system
such as a human being, or a social system such as community of people, requires
fundamental notions of information processing. Ideas and techniques we have
developed in core computer science will play more important roles in many
areas, including SSME.

References

1. IBM: Global Innovation Outlook,
http://domino.watson.ibm.com/comm/www innovate.nsf/pages/world.gio.html

2. Hidaka, K.: Trends in Services Sciences in Japan and Abroad. Science & Technology
Trends Quarterly Review (2006)

3. IBM Institute for Business Value: Component Business Models. IBM Business Con-
sulting Services

4. Weerawarana, S., Curbera, F., Leymann, F., Storey, T., Ferguson, D.F.: Web Ser-
vices Platform Architecture: SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL,
WS-Reliable Messaging and More. Prentice Hall PTR, Upper Saddle River, NJ, USA
(2005)

5. Boss, G., Malladi, P., Quan, D., Legregni, L., Hall, H.: Cloud Computing. In: IBM
(2007)

6. Mizuta, H., Yamagata, Y.: Agent-based simulation for economic and environmental
studies. In: Proceedings of the Joint JSAI 2001 Workshop on New Frontiers in
Artificial Intelligence, London, UK, pp. 142–152. Springer, Heidelberg (2001)

7. Yoshihama, S., Ebringer, T., Nakamura, M., Munetoh, S., Maruyama, H.: WS-
Attestation: Efficient and Fine-Grained Remote Attestation on Web Services. In:
ICWS 2005: Proceedings of the IEEE International Conference on Web Services,
Washington, DC, USA, pp. 743–750. IEEE Computer Society, Los Alamitos (2005)

8. Denning, P.J.: Computing is a natural science. Commun. ACM 50, 13–18 (2007)

http://domino.watson.ibm.com/comm/www_innovate.nsf/pages/world.gio.html

T. Nanya et al. (Eds.): ISAS 2008, LNCS 5017, pp. 17–19, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Predictive Algorithms and Technologies
for Availability Enhancement

Miroslaw Malek

Institut für Informatik, Humboldt-Universität zu Berlin
malek@informatik.hu-berlin.de

Predicting the future has fascinated people throughout civilizations but until the 20th
century it has been more of a magic than science. Ability to predict the future has a
significant impact on wide spectrum of applications ranging from business,
communication systems and politics to health monitoring and enviromental
protection. It will also become essential in dependability enhancement, security and
critical infrastructure protection. With development of machine learning, pattern
recognition, data mining and computer technology we seem to be better equipped to
tackle the prediction problem with a more science-based, goal-oriented approach.

In this tutorial, we focus on predictive algorithms and technologies which may
have a major impact on computer systems availability, security and performance. We
first motivate our approach, present the best practice guide for using prediction
algorithms and models, then briefly survey short-term prediction techniques,
introduce two concrete prediction methods and prediction quality measures, and then
demonstrate how the availability of software and hardware systems can be increased
by preventive measures which are triggered by short-term failure prediction
mechanisms.

Over the past decades computing performance has increased by several orders of
magnitude. At the same time, the computer systems dependability due to untamed
growth in complexity barely kept up to stay at the same level at best, frequently
showing in part unpredictable behavior. Software related failures are now
predominant and can be seen as a threat to the benefits computing systems aim to
provide. Classical approaches to increase dependability such as testing, formal
methods and fault injection are too complex and too rigorous to scale up to enterprise
systems. Also, due to dynamicity (frequent configurations, reconfigurations, updates,
upgrades and patches) an already tested system can transform into a new untested
system and additional faults may be inserted. Furthermore, frequently unpredictable
industrial environment makes it difficult to incorporate its behavior into the formal
models. New functionality is added in an ad-hoc manner without fully understanding
the impact on the entire system. Software and hardware systems tend to be embedded
in complex, highly dynamic and frequently decentralized organizations. The support,
maintenance and premises of these systems can change frequently which invokes ad-
hoc reconfiguration. Additionally, industrial computing systems frequently have
significant nonfunctional constraints on their operations. Also, growing connectivity,
interoperability and systems proliferation to applications in all domains of human
activity makes dependability a key and permanent challenge. It goes without saying
that traditional approaches are likely to fail given industrial complexity levels [1].

18 M. Malek

d) Model Applicationc) Model Estimationb) Variable Selection /
Complexity Reduction

forw ard selection

bac kw ard elimination

probabilis tic w rapper

ARMA / AR

multivariate linear

unsiversal basis
func tions (UBF)

radial basis func tions
(RBF)

support vector
machines (SVM)

sensitivity analysis

forecasting

a) System Observation

time series (numerical)

log files (categorical)

e) Reaction / Actuation

offline system
adaptation

online reac tion schemes

f) closing the control loop

system experts

.. .

Fig. 1. Building blocks for modeling and forecasting performance variables as well as critical
events in complex software systems either during runtime or during off-line testing. System
observations (a) include numerical time series data and/or categorical log files. The variable
selection process (b) is frequently handled implicitly by system expert's ad-hoc theories or gut
feeling, rigorous procedures are applied infrequently. In recent studies attention has been focused
on the model estimation process (c). Univariate and multivariate linear regression techniques
have been at the center of attention. Some nonlinear regression techniques such as universal
basis functions or support vector machines have been applied as well. While forecasting has
received a substantial amount of attention, sensitivity analysis (d) of system models has been
largely marginalized. Closing the control loop (f) is still in its infancy. Choosing the right
reaction scheme (e) as a function of quality of service and cost is nontrivial [1].

In this tutorial, we propose an approach based on runtime monitoring and failure
prediction which in combination with preventive techniques may significantly
increase dependability while defying system complexity, dynamicity and enviromen-
tal changes. We present and evaluate mainly non-parametric techniques which model
and predict the occurrence of failures as a function of discrete and continuous
measurements of system variables.

We present our best practice guide (see Fig.1) backed by methodology and models
for availability enhancement using failure prediction and recovery methods that we
have developed [1], [2], [3]. This best practice guide is based on the experience we
have gained when investigating these topics in an industrial environment:

• complexity reduction, showing that selecting the most predictive subset of
variables contributes more to model quality than selecting a particular linear
or nonlinear modeling technique

• information gain of using numerical vs. categorical data: finding that
including log file data into the modeling process may degrade model quality
for prediction of call availability of a telecommunication system due to
increased processing requirements,

• data-based empirical modeling of complex software systems, cross
benchmarking of linear and nonlinear modeling techniques, finding
nonlinear approaches to be consistently superior than linear approaches,
however, not always significantly.

 Predictive Algorithms and Technologies for Availability Enhancement 19

In the tutorial, we introduce this approach in detail. In a nutshell it is a function
approximation technique utilising universal basis functions which is a derivative of
radial basis functions. The presented modeling method is data driven rather than
analytical and can handle large amounts of variables and data. It offers the potential to
capture the underlying dynamics of even high-dimensional and noisy systems.
Another technique, that will be presented, is based on Hidden Semi-Markov Models
and uses error logs with event type and timestamps. The data includes event-based log
files and measured system states. Although computationally demanding, this
technique produces excellent prediction results.

Both modeling techniques have been applied to real data of a commercial
telecommunication platform. We compare the effectiveness of discussed techniques
with other methods in terms of precision, recall, F-measure and cumulative cost. The
two methods demonstrate largely improved forecasting performance compared to
alternative approaches such as linear ARMA models. We also briefly survey other
techniques such as Eventset Method and approach used in BlueGene/L
supercomputer.

Finally, we present a plethora of preventive measures that can be applied once it is
established that a failure appears to be imminent. They range from microreboot to
failover.

By using the presented prediction and prevention techniques the system availability
may be dramatically improved by up to an order of magnitude.

The current challenges will be introduced and one of them is how to assess service
availability at runtime based IT system availability. The first attempt to tackle this
challenge is presented in this volume [4].

References

1. Hoffmann, G.A., Trivedi, K.S., Malek, M.: A Best Practice Guide to Resource Forecasting
for Computing Systems. IEEE Transactions on Reliability 56(4) (2007)

2. Hoffmann, G.A., Malek, M.: Call Availability Prediction in a Telecommunication System:
A Data Driven Empirical Approach. In: IEEE Symposium on Reliable Distributed Systems
(SRDS 2006), Leeds, United Kingdom (2006)

3. Salfner, F., Malek, M.: Using Hidden Semi-Markov Models for Effective Online Failure
Prediction. In: IEEE Proceedings of the 26th Symposium on Reliable Distributed Systems
(SRDS 2007), Beijing, China (2007)

4. Malek, M., Milic, M., Milanovic, N.: Analytical Availability Assessment of IT Services. In:
5017

T. Nanya et al. (Eds.): ISAS 2008, LNCS 5017, pp. 20–25, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Achieving and Assuring High Availability

Kishor Trivedi1, Gianfranco Ciardo2, Balakrishnan Dasarathy3, Michael Grottke4,
Rivalino Matias1, Andy Rindos5, and Bart Vashaw5

1 Duke University
2 UC Riverside

3 Telcordia
4 University of Erlangen-Nuremberg

5 IBM
kst@ee.duke.edu, ciardo@cs.ucr.edu, das@research.telcordia.com,
rivalino@ece.duke.edu, michael.grottke@wiso.uni-erlangen.de,

{rindos,vashaw}@us.ibm.com

Abstract. We discuss availability aspects of large software-based systems. We
classify faults into Bohrbugs, Mandelbugs and aging-related bugs, and then
examine mitigation methods for the last two bug types. We also consider
quantitative approaches to availability assurance.

Keywords: High-Availability, Proactive Fault-Tolerance, Software Aging.

1 Overview

Bugs invariably remain when an application is deployed. A good, albeit expensive,
development process can reduce the number of residual bugs to the order of 0.1
defects per 1000 lines of code [1]. There are broadly two classes of residual bugs in
an application, known as Bohrbugs and Mandelbugs [2]. Bohrbugs are easily isolated
and manifest themselves consistently under well-defined sets of conditions; thus, they
can be detected and fixed during the software-testing phase, although some of them
do remain in production. Preliminary results from investigation of a NASA software
project suggest that 52% of residual bugs were Bohrbugs [3]. Mandelbugs instead
have complex causes, making their behavior appear chaotic or even non-deterministic
(e.g., race conditions), thus are often difficult to catch and correct in the testing phase.
Retrying the same operation might not result in a failure manifestation. A third type of
bugs has the characteristic that its failure manifestation rate increases with the time of
execution. Such faults have been observed in many software systems and have been
called aging-related bugs [4], [5], [6]. Memory leaks and round-off errors are
examples of aging-related bugs. There are effective approaches to dealing with
residual Bohrbugs after a software product has been released. If a failure due to a
Bohrbug is detected in production, it can be reproduced in the original testing
environment, and a patch correcting the bug or a workaround can be issued.
Mandelbugs, however, often cannot be easily fixed, thus techniques to recover from
Mandelbugs at run-time are needed. Broadly applicable cost- and time-effective

 Achieving and Assuring High Availability 21

run-time techniques also exist to address aging-related bugs. We focus on Mandel-
bugs and aging-related bugs in this tutorial.

In general, there are two ways to improve availability: increase time-to-failure
(TTF) and reduce time-to-recovery (TTR). To increase TTF, proactive failure
avoidance techniques known as rejuvenation can be used for aging-related bugs. To
reduce TTR, we propose instead escalated levels of recovery, so that most failures are
fixed by the quickest recovery method and only few by the slowest ones. We are also
interested in quantifiable availability assurance.

2 Quantified Availability Assurance

In practice, availability assurance is provided qualitatively by means of verbal
arguments or using checklists. Quantitative assurance of availability by means of
stochastic availability models constructed based on the structure of the system
hardware and software is very much lacking in today’s practice [7], [8], [9]. While
such analyses are supported by software packages [10], they are not routinely carried
out on what are touted as high availability products; there are only islands of such
competency even in large companies.

Engineers commonly use reliability block diagrams or fault trees to formulate and
solve availability models because of their simplicity and efficiency [10], [11]. But
such combinatorial models cannot easily incorporate realistic system behavior such as
imperfect coverage, multiple failure modes, or hot swap [7], [9]. In contrast, such
dependencies and multiple failure modes can be easily captured by state-space models
[11] such as Markov chains, semi-Markov processes, and Markov regenerative
processes. However, the construction, storage, and solution of these models can
become prohibitive for real systems. The problem of large model construction can be
alleviated by using some variation of stochastic Petri nets, but a more practical
alternative is to use a hierarchical approach using a judicious combination of state
space models and combinatorial models [10]. Such hierarchical models have been
successfully used on practical problems including hardware availability prediction
[12], OS failures [7], [8] and application software failures [9]. Furthermore, user and
service-oriented measures can be computed in addition to system availability.
Computational methods for such user-perceived measures are just beginning to be
explored [9], [13], [14]. Subsequently, parameter values are needed to solve the
models and predict system availability and related measures. Model input parameters
can be divided into failure rates of hardware or software components; detection,
failover, restart, reboot and repair delays and coverages; and parameters defining the
user behavior. Hardware failure rates (actually MTTFs) are generally available from
vendors, but software component failure rates are much harder to obtain. One
approach is to carry out controlled experiments and estimate software component
failure rates. In fact, we are currently performing such experiments for the IBM WAS
SIP (WebSphere Application Server Session Initiation Protocol) implementation.
Fault-injection experiments can be used to estimate detection, restart, reboot, and
repair delays, as in the IBM SIP reliability model [9]. Due to many simplifying
assumptions made about the system, its components, and their interactions and due to
unavailability of accurate parameter values, the results of the models cannot be taken

22 K. Trivedi et al.

as a true availability assurance. Monitoring and statistically inferring the observed
availability is much more satisfactory assurance of availability. Off-line [16] and on-
line [17] monitoring of deployed system availability and related metrics can be
carried out. The major difficulty is the amount of time needed to get enough data to
obtain statistically significant estimates of availability.

3 Recovery from Failures Caused by Mandelbugs

Reactive recovery from failures caused by Mandelbugs has been used for some time
in the context of operating system failures, where reboot is the mitigation method [8].
Restart, failover to a replica, and further escalated levels of recovery such as node
reboot and repair are being successfully employed for application failures. Avaya’s
NT-SwiFT and DOORS systems [18], JPL REE system [19], Alcatel Lucent [15],
IBM x-series models [20], and IBM SIP/SLEE cluster [9] are examples where
applications or middleware processes are recovered using one or more of these
techniques. To support recovery from Mandelbug-caused failures, multiple run-time
failure detectors are employed to ensure that detection takes place within a short
duration of the failure occurrence. In all but the rarest cases, manual detection is
required. As, by definition, failures caused by non-aging-related Mandelbugs cannot
be anticipated and must be reacted to, current research is aimed at providing design
guidelines as to how fast recovery can be accomplished and obtaining quantitative
assurance on the availability of an application.

Stochastic models discussed in the previous section are beginning to be used to
provide quantitative availability assurance [9], [18], [19], [20]. Besides system
availability, models to compute user-perceived measures such as dropped calls in a
switch due to failures are also beginning to be used [9]. Such models can capture the
details of user behavior [14] or the details of the call flow [9] and their interactions
with failure and recovery behavior of hardware and software resources. Difficulties
we encounter in availability modeling are model size and obtaining credible input
parameters. To deal with the large size of availability models for real systems, we
typically employ a hierarchical approach where the top-level model is combinatorial,
such as a fault tree [7], [9], [12] or a reliability block diagram [8]. Lower-level
stochastic models for each subsystem in the fault tree model are then built. These
submodels are usually continuous-time Markov chains, but if necessary non-Markov
models can be employed. Weak interactions between submodels can be dealt with
using fixed-point iteration [21]. The key advantage of such an hierarchical approach is
that closed-form solution now appears feasible [7], [13] as the Markov submodels are
typically small enough to be solved by Mathematica and the fault tree can be solved
in closed-form using tools like our own SHARPE software package [10]. Once the
closed-form solution is obtained, we can also carry out formal sensitivity analysis to
determine bottlenecks and provide feedback for improvement to the designers [13].
We are currently working on interfacing SHARPE with Mathematica to facilitate such
closed-form solutions. Errors in these approximate hierarchical models can be studied
by comparison with discrete-event simulation or exact stochastic Petri net models
solved numerically.

 Achieving and Assuring High Availability 23

4 Proactive Recovery and Aging-Related Bugs

Aging-related bugs in a system are such that their probability of causing a failure
increases with the length of time the system is up and running. For such bugs, besides
reactive recovery, proactive recovery to clean the system internal state can effectively
reduce the failure rate. This kind of preventive maintenance is known as “software
rejuvenation” [2], [22]. Many types of software systems, such as telecommunication
software [22], web servers [5], [23], and military systems [6], are known to
experience aging. Rejuvenation has been implemented in several kinds of software
systems, including telecommunication billing data collection systems [22], spacecraft
flight systems [24], and cluster servers [25].

The main advantage of planned preemptive procedures such as rejuvenation is that
the consequences of sudden failures (like loss of data and unavailability of the entire
system) are postponed or prevented; moreover, administrative measures can be
scheduled to take place when the workload is low. However, for each such
preemptive action, costs are incurred in the form of scheduled downtime for at least
some part of the system. Rejuvenation can be carried out at different granularities:
restart a software module, restart an entire application, restart a specific virtual
machine in a VMM (Virtual Machine Monitor), perform garbage collection in a node,
or reboot a hardware node [23], [26], [27]. A key design question is finding the
optimal rejuvenation schedule and granularity. Rejuvenation scheduling can be time-
based or condition-based. In the former, rejuvenation is done at fixed time intervals,
while, in the latter, the condition of system resources is monitored and prediction
algorithms are used to determine an adaptive rejuvenation schedule [4]. A
rejuvenation trigger interval, as computed in time-based rejuvenation, can adapt to
changing system conditions, but its adaptation rate is slow as it only responds to
failures that are expected to be rare. Condition-based rejuvenation instead does not
need time to failure inputs; it computes rejuvenation trigger interval by monitoring
system resources and predicting the time to exhaustion of resources for the adaptive
scheduling of software rejuvenation [4], [25], [28]. Whatever schedule and granularity
of rejuvenation is used, the important question is what improvement this implies on
system availability, if any. Published results are based on either analytic models [20]
or simulations [29]. Early experimental results [26] are very encouraging, where
rejuvenation increased the MTTF by a factor of two.

References

1. Holzmann, G.J.: Conquering complexity. IEEE Computer, Los Alamitos (2007)
2. Grottke, M., Trivedi, K.S.: Fighting bugs: Remove, retry, replicate and rejuvenate. IEEE

Comp. 40, 107–109 (2007)
3. Grottke, M., Nikora, A., Trivedi, K.S.: Preliminary results from the NASA/JPL

investigation - Classifying Software Faults to Improve Fault Detection Effectiveness
(2007)

4. Garg, S., van Moorsel, A., Vaidyanathan, K., Trivedi, K.S.: A methodology for detection
and estimation of software aging. In: 9th Int’l Symp. on Software Reliability Engineering,
pp. 283–292 (1998)

24 K. Trivedi et al.

5. Grottke, M., Li, L., Vaidyanathan, K., Trivedi, K.S.: Analysis of software aging in a web
server. IEEE Transactions on Reliability 55, 411–420 (2006)

6. Marshall, E.: Fatal error: how Patriot overlooked a Scud. Science 255, 1347 (1992)
7. Smith, W.E., Trivedi, K.S., Tomek, L., Ackeret, J.: Availability analysis of multi-

component blade server systems. IBM Systems Journal (to appear, 2008)
8. Trivedi, K.S., Vasireddy, R., Trindade, D., Nathan, S., Castro, R.: Modeling high

availability systems. In: Pacific Rim Dependability Conference (2006)
9. Trivedi, K.S., Wang, D., Hunt, J., Rindos, A., Peyravian, M., Pulito, B.: IBM SIP/SLEE

cluster reliability model. In: Globecom 2007, D&D Forum, Washington (2007)
10. Sahner, R.A., Trivedi, K.S., Puliafito, A.: Performance and Reliability Analysis of

Computer Systems. Kluwer Academic Press, Dordrecht (1996)
11. Trivedi, K.S.: Probability & Statistics with Reliability, Queueing and Computer Science

Applications, 2nd edn. John Wiley, New York (2001)
12. Lanus, M., Yin, L., Trivedi, K.S.: Hierarchical composition and aggregation of state-based

availability and performability models. IEEE Transactions on Reliability, 44–52 (2003)
13. Sato, N., Nakamura, H., Trivedi, K.S.: Detecting performance and reliability bottlenecks of

composite web services. In: ICSOC (2007)
14. Wang, D., Trivedi, K.S.: Modeling user-perceived service availability. In: Malek, M., Nett,

E., Suri, N. (eds.) ISAS 2005. LNCS, vol. 3694, Springer, Heidelberg (2005)
15. Mendiratta, V.B., Souza, J.M., Zimmerman, G.: Using software failure data for availability

evaluation. In: GLOBECOM 2007, Washington (2007)
16. Garzia, M.: Assessing the Reliability of Windows Servers. In: Int’l Conf. Dependable

Systems and Networks (2003)
17. Haberkorn, M., Trivedi, K.S.: Availability monitor for a software based system. In: HASE,

Dallas (2007)
18. Garg, S., Huang, Y., Kintala, C.M.R., Trivedi, K.S., Yajnik, S.: Performance and

reliability evaluation of passive replication schemes in application level fault tolerance. In:
29th Annual Int’l Symp. on Fault Tolerant Computing, Wisconsin, pp. 15–18 (1999)

19. Chen, D., et al.: Reliability and availability analysis for the JPL remote exploration and
experimentation system. In: Int’l Conf. Dependable Systems and Networks, Washington
(2002)

20. Vaidyanathan, K., Harper, R.E., Hunter, S.W., Trivedi, K.S.: Analysis and implementation
of software rejuvenation in cluster systems. In: ACM SIGMETRICS (2001)

21. Mainkar, V., Trivedi, K.S.: Sufficient conditions for existence of a fixed point in stochastic
reward net-based iterative methods. IEEE Transactions on Software Engineering 22, 640–
653 (1996)

22. Huang, Y., Kintala, C., Kolettis, N., Fulton, N.: Software rejuvenation: analysis, module
and applications. In: 25th Int’l Symp. on Fault-Tolerant Computing, pp. 381–390 (1995)

23. Matias Jr., R., Freitas, P.J.F.: An experimental study on software aging and rejuvenation in
web servers. In: 30th IEEE Annual Int’l Computer Software and Applications Conference,
Chicago, pp. 189–196 (2006)

24. Tai, A., Chau, S., Alkalaj, L., Hect, H.: On-board preventive maintenance: a design-
oriented analytic study for long-life applications. J. Perf. Evaluation 35, 215–232 (1999)

25. Castelli, V., Harper, R.E., Heidelberger, P., Hunter, S.W., Trivedi, K.S., Vaidyanathan, K.,
Zeggert, W.P.: Proactive management of software aging. IBM Journal of Research and
Development 45, 311–332 (2001)

26. Kourai, K., Chiba, S.: A fast rejuvenation technique for server consolidation with virtual
machines. In: Int’l Conf. on Dependable Systems and Networks, pp. 245–255 (2007)

 Achieving and Assuring High Availability 25

27. Xie, W., Hong, Y., Trivedi, K.S.: Analysis of a two-level software rejuvenation policy.
Reliability Engineering and System Safety 87, 13–22 (2005)

28. Vaidyanathan, K., Trivedi, K.S.: A comprehensive model for software rejuvenation. IEEE
Transactions on Dependable and Secure Computing 2, 124–137 (2005)

29. Dohi, T., Goseva-Popstojanova, K., Trivedi, K.S.: Statistical Non-Parametric Algorithms
to Estimate the Optimal Software Rejuvenation Schedule. In: 2000 Pacific Rim Intl. Symp.
on Dependable Computing, Los Angeles, pp. 77–84 (2000)

Optimizing Security Measures in an Intrusion

Tolerant Database System

Toshikazu Uemura and Tadashi Dohi

Department of Information Engineering, Graduate School of Engineering
Hiroshima University, 1–4–1 Kagamiyama, Higashi-Hiroshima, 739–8527 Japan

dohi@rel.hiroshima-u.ac.jp

Abstract. In this paper we describe the stochastic behavior of an in-
trusion tolerant database (ITDB) system and quantitatively evaluate its
security measures. More specifically, we develop a semi-Markov model
and derive three security measures; system availability, system integrity
and rewarding availability. By introducing an additional control param-
eter called the switching time, we develop secure control schemes of the
ITDB, which maximize the respective security measures, and show nu-
merically that the security measures can be improved by controlling the
switching time.

Keywords: ITDB, dependable and secure service, survivability, system
integrity, rewarding availability, optimization, semi-Markov models.

1 Introduction

The use of computer-based systems and Internet has been undergoing dramatic
growth in scale, variety and coverage, implying our growing dependence on them
for a large number of businesses and day-to-day life services. Unfortunately, the
complexity, the heterogeneity and the openness of the supporting infrastructure
to uncontrolled users have also given rise to an increasing number of vulnera-
bilities and malicious threats (viruses, worms, denial of service attacks, fishing
attempts, etc.). If the access rights are limited, the probability of an intrusion by
a malicious attacker will be decreased, but the accessibility and utilization will
be reduced. The classical security-related works have traditionally, with a few
exceptions, focused on intrusion avoidance techniques (vulnerability elimination,
strong authentication, etc.) and attack deterrence (attack tracing, auditing, etc.).
However, such techniques have proved to be not sufficient to ensure the security
of systems connected to networks.

More recently, intrusion tolerance techniques, inspired from traditional tech-
niques commonly used for tolerating accidental faults in hardware and/or soft-
ware systems, have received considerable attention to complement intrusion
avoidance techniques, and improve the security of systems connected to the In-
ternet. So far, most efforts in security have been focused on specification, design
and implementation issues. In fact several implementation techniques of intrusion

T. Nanya et al. (Eds.): ISAS 2008, LNCS 5017, pp. 26–42, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Optimizing Security Measures in an Intrusion Tolerant Database System 27

tolerance at the architecture level have been developed for real computer-based
systems such as distributed systems [3], database systems [12,13], middleware
[26,27], server systems [5]. Stroud et al. [24] reported the MAFTIA (Malicious
and Accidental Fault Tolerance for Internet Applications) project which was a
three-year European research project and explored the techniques to build ac-
tual intrusion tolerant systems. The above implementation approaches are based
on the redundant design at the architecture level on secure software systems. In
other words, since these methods can be categorized by a design diversity tech-
nique in secure system design and need much cost for the development, the effect
on implementation has to be evaluated carefully and quantitatively.

The quantitative evaluation of information security based on modeling is be-
coming popular to validate the effectiveness of computer-based systems with
intrusion tolerance. Littlewood et al. [11] found the analogy between the in-
formation security theory and the traditional reliability theory in assessing the
quantitative security of operational software systems, and explored the feasibil-
ity of probabilistic quantification on security. Jonsson and Olovsson [10] gave a
quantitative method to study the attacker’s behavior with the empirical data ob-
served in experiments. Ortalo, Deswarte and Kaaniche [18] applied the privilege
graph and the continuous-time Markov chain (CTMC) to evaluate the system
vulnerability, and derived the mean effort to security failure. Singh, Cukier and
Sanders [22] designed a stochastic activity network model for probabilistic val-
idation of security and performance of several intrusion tolerant architectures.
Stevens et al. [23] also proposed probabilistic methods to model the DPASA
(Designing Protection and Adaptation into a Survivable Architecture).

On the other hand, it would be quite effective to apply the traditional Markov/
semi-Markov modeling approaches to design the state transition diagram of
system security states by incorporating both attacker and system behaviors
under uncertainty. Madan et al. [15,16] dealt with an architecture with intru-
sion tolerance, called SITAR (Scalable Intrusion Tolerant Architecture) and de-
scribed the stochastic behavior of the system by a discrete-time semi-Markov
chain (DTSMC). They also derived analytically the mean time to security fail-
ure. Imaizumi, Kimura and Yasui [6] and Uemura and Dohi [25] focused on
the typical denial of service attacks for server systems and formulated the op-
timization problems on the optimal monitoring time and the optimal patch
management policy via continuous-time semi-Markov chain (CTSMC) models.
Although they mainly considered the expected cost models which are related to
the Markov/semi-Markov analyses, the relationship with security attributes was
still unclear in modeling.

For the purpose of comprehensive modeling of system-level security quantifi-
cation, it is actually difficult to model certain security attributes such as confi-
dentiality and integrity using the probabilistic techniques as well as to quantify
the high-level security requirement with different security attributes [17]. Hence,
the measurement techniques for model parameterization and validation must
be carefully selected in security evaluation. In such a situation, the survivability

28 T. Uemura and T. Dohi

analysis is becoming very common to quantify the computer-based systems
under the assumption that failure may occur and that the outcome of the fail-
ure negatively impacts a large segment of the subscribers to the IT infrastruc-
ture. Such failures may be the result of deliberate, malicious attacks against
the infrastructure by an adversary. Survivability has been defined as the ca-
pability of a system to fulfill its mission in a timely manner, in the presence
of attacks, failures, or accidents. Ellison et al. [4], Jha et al. [7,8] introduced
the concept of survivability in network specification and analysis. This idea has
been applied to several type of computer-based systems such as wireless commu-
nications network [19,20], telephone access network [14], grid resource manage-
ment system [21], operational software application [1], cluster system [2], cellular
network [9].

In this paper we consider the design of an intrusion tolerant database (ITDB)
system with a control parameter, and describe the stochastic behavior of an
intrusion tolerant database system (ITDB). First, Liu et al. [12,13] proposed sev-
eral ITDB architectures and presented the design and implementation method-
ologies. While traditional secure database systems rely on preventive controls
and are very limited in surviving malicious attacks, the ITDB can detect intru-
sions and isolate attacks. In addition, it can contain, assess and repair the dam-
age caused by intrusions in a timely manner such that sustained, self-stabilized
levels of data integrity and availability can be provided to applications in the
face of attacks. With the aim to quantify the ITDB, Yu, Liu and Zang [29] and
Wang and Liu [28] developed simple CTMC models to evaluate the survivability
of the ITDB. Especially, Wang and Liu [28] formulated two survivability mea-
sures; system integrity and rewarding availability1. In this paper we extend it
to a CTSMC model with non-exponentially distributed transition times, and
provide more robust quantitative framework to malicious attacks with a variety
of probabilistic patterns.

Further, by introducing an additional control parameter called the switching
time, we develop secure control schemes of the ITDB, which maximize the secu-
rity measures; system integrity and rewarding availability, as well as the common
system availability. Necessary and sufficient conditions for selecting a unique op-
timal switching time are derived under not very restrictive parameter assump-
tions. This is another reason why the underlying CTMC model is extended to a
CTSMC model with non-exponentially distributed transitions. These analytical
results enable us to maximize the utility of intrusion tolerance in the ITDB. Nu-
merical examples are devoted to examine the dependence of model parameters
on the optimal switching time and its associated security measures. Throughout
the sensitivity analysis on the model parameters, it is shown numerically that
the ITDB should be designed to minimize mission impact by containing both
the intrusion and failure. Finally, the paper is concluded with some remarks and
future research directions.

1 The integrity defined in [28] seems to be somewhat different from the usual quali-
tative definition as a security attribute. In this paper we call it the system integrity
which is a quantitative measure, and distinguish from the qualitative measure.

Optimizing Security Measures in an Intrusion Tolerant Database System 29

2 Intrusion Tolerant Database System

2.1 Basic Concept

First of all, we give a brief summary on an intrusion tolerant database (ITDB).
In the ITDB, once it is damaged from any reason such as infections and attacks,
the damaged parts are automatically located, contained and repaired as soon as
possible, so that the database can continue being operative with intact intrusion
tolerant functions. Figure 1 shows the major components of a comprehensive
ITDB, which was introduced in [12,13]. In a fashion similar to the reference [28],
we also focus on some significant components; Mediator, Damage containment
and Damage recovery, in Fig.1 and describe the stochastic behavior of functions
in major components. Mediator subsystem may function as a proxy for each
user transaction and transaction processing call to the database system, and
enables to keep the useful information on user transactions, such as read/write
operations. This function is quite important to generate the corresponding logs
for damage recovery and containment.

More precisely, in the traditional secure database system, the damage contain-
ment can not be made until the data items are identified as damaged ones. In this
situation, a significant damage assessment latency may happen, so that the dam-
age caused by attacks or intrusions may propagate to the other data items. In
the ITDB, the so-called multi-phase damage containment technique is applied as
an intrusion tolerant technique [12], where it involves one containing phase and
one or more uncontaining phases referred to as Containment relaxation. Once an
intrusion is detected by the intrusion detector, the damage recovery subsystem
has the responsibility to do the damage assessment and repair, and retrieves the
malicious transaction messages reported from the intrusion detector. Simulta-
neously, the damage containment subsystem traces the damage propagation by
capturing the dependent-upon relationship among transactions.

Hence, the control by the intrusion detector plays an central role to the design
of the ITDB. Since the intrusion detector is based on both the trails on the logs
and some relevant rules to identify malicious transactions, however, its effect is
limited. In other words, it would be impossible to detect all the intrusions auto-
matically in real time. In practice, two control modes can be ready; automatic
detection mode and manual detection mode, so that an automatic detection
mode can be switched to a manual detection mode if the intrusion detector does
return a response during the real time operation. Wang and Liu [28] developed a
simple CTMC model with random switching from an automatic detection mode
to a manual one, and evaluated the security measures for the ITDB.

2.2 Model Description

Following Wang and Liu [28], we also focus on three components in the ITDB,
the mediator, damage recovery and damage containment systems. Suppose that
the database system starts operating at time t = 0 with Normal State; G. If
attackers or hackers detect the vulnerability of the database, they try to attack

30 T. Uemura and T. Dohi

Damage Repairer
Damage Recovery System

Damage Assessor

User Transactions

Database
Server

Transaction Logs

Unconfinement Executor

Damage Containment System

Mediator

Transaction Proxy

Confinement Executor

Traditional Database System

Intrusion Detector

Fig. 1. Basic ITDB architecture

the database and the state may make a transition to Infection State; I, where the
transition time from G to I has the continuous cumulative distribution function
(c.d.f.) FG,I(t) with mean μG,I (> 0). Once the malicious attack by an attacker
is successful in state I, the intrusion detector begins operating automatically.
If the infection of parts or data items is detected in the automatic detection
mode, the state makes a transition from I to Maintenance State; M , where the
transition time from I to M is given by a random variable having the continuous
c.d.f. FI,M (t) and mean μI,M (> 0). In this phase, when the infected items are
identified more specifically through the damage assessor, the corrective recovery
operation is triggered in Recovery State; R in the damage recovery system. Let
the state transition time from M to R be the random variable having the c.d.f.
FM.R(t) and mean μM,R (> 0). After the completion of recovery operation, the
infected parts are fixed and the database system can become as good as new
with Normal State, where the completion time to recover the database is given
by the non-negative continuous random variable with the c.d.f. FR,G(t) and mean
μR,G (> 0).

On the other hand it is worth mentioning that identification of infected parts
or data items is not always possible only in the automatic detection mode. In
other words, the intrusion detection is not always perfect for all possible attacks,
so that the system manager or the operator may have to search the infected parts
in the manual detection mode. Wang and Liu [28] considered the possibility of
switching from the automatic detection mode to the manual detection mode, and
assumed that the switching may occur randomly. This corresponds to the switch-
ing from the unconfinement executor to the confinement executor. In [28], the
associated stochastic model is based on a CTMC with exponentially distribute

Optimizing Security Measures in an Intrusion Tolerant Database System 31

G I

M R

MD MR

FG,I (t)

FI,M (t)

FI,MD (t)

FM,R (t)

FMD,MR (t)

FR,G (t)

FMR,G (t)

Fig. 2. Semi-Markov transition diagram

transition times. Instead of the exponential switching time, we model the switch-
ing time by the non-negative continuous random variable with the c.d.f. FI,MD(t)
and mean μI,MD (> 0), where Manual detection state is denoted by MD, and
the damaged parts are contained manually within the ITDB. When the intru-
sion is detected, the system state makes a transition from MD to MR, and next
the recovery operation starts immediately. Finally, when the recovery operation
is complete, the state makes a transition from MR to G with Normal state.
In this way, the same cycle repeats again and again over an infinite time hori-
zon. Since the underlying stochastic process is a CTSMC, it is noted that our
model is an extended version to the CTMC model in [28]. Figure 2 illustrates
the state-transition diagram for the CTSMC model.

3 Semi-markov Analysis

Let Qi,j(t) (i, j ∈ {G, I, M, R, MD, MR}, i �= j) be the one-step transition prob-
ability from state i to state j for the underlying CTSMC. Also, we define the
Laplace-Stieltjes transform (LST) by qi,j(s) =

∫ ∞
0 exp{−st}dQi,j(t). From Fig.2

it is immediate to see that

qG,I(s) =
∫ ∞

0
exp{−st}dFG,I(t), (1)

qI,M (s) =
∫ ∞

0
exp{−st}F I,MD(t)dFI,M (t), (2)

qM,R(s) =
∫ ∞

0
exp{−st}dFM,R(t), (3)

qR,G(s) =
∫ ∞

0
exp{−st}dFR,G(t), (4)

qI,MD(s) =
∫ ∞

0
exp{−st}F I,M (t)dFI,MD(t), (5)

32 T. Uemura and T. Dohi

qMD,MR(s) =
∫ ∞

0
exp{−st}dFMD,MR(t), (6)

qMR,G(s) =
∫ ∞

0
exp{−st}dFMR,G(t), (7)

where in general ψ(·) = 1 − ψ(·). Define the recurrent time distribution from
state G to state G and its LST by HG,G(t) and hG,G(s), respectively. Then,
from the one-step transition probabilities above, we have

hG,G(s) =
∫ ∞

0
exp{−st}dHG,G(t)

= qG,I(s)qI,M (s)qM,R(s)qR,G(s)+qG,I(s)qI,MD(s)qMD,MR(s)qMR,G(s).
(8)

Let PG,j(t) denote the transition probabilities from the initial state G to re-
spective states j ∈ {G, I, M, R, MD, MR}. Then, the LSTs of the transition
probabilities, pG,j(s) =

∫ ∞
0 exp{−st}dPG,j(t), are given by

pG,G(s) = qG,I(s)/hG,G(s), (9)

pG,I(s) = qG,I(s)
{

qI,M (s) − qI,MD(s)
}

/hG,G(s), (10)

pG,M (s) = qG,I(s)qI,M (s)qM,R(s)/hG,G(s), (11)

pG,R(s) = qG,I(s)qI,M (s)qM,R(s)qR,G(s)/hG,G(s), (12)

pG,MD(s) = qG,I(s)qI,MD(s)qMD,MR(s)/hG,G(s), (13)

pG,MR(s) = qG,I(s)qI,MD(s)qMD,MR(s)qMR,G(s)/hG,G(s). (14)

Of our concern here is the derivation of the steady-state probabilities Pj =
limt→∞ PG,j(t) j ∈ {G, I, M, R, MD, MR}. Based on the above LSTs, pG,j(s),
we calculate Pj = limt→∞ PG,i(t) = lims→0 pG,i(s) and, from some algebraic
manipulations, obtain

PG =
μG,I

h
′

G,G(0)
, (15)

PI =

∫ ∞
0 F I,MD(t)F I,M (t)dt

h
′

G,G(0)
, (16)

PM =
μM,R

∫ ∞
0 F I,MD(t)dFI,M (t)

h
′

G,G(0)
, (17)

PR =
μR,G

∫ ∞
0 F I,MD(t)dFI,M (t)

h
′

G,G(0)
, (18)

PMD =
μMD,MR

∫ ∞
0 F I,M (t)dFI,MD(t)

h
′

G,G(0)
, (19)

PMR =
μMR,G

∫ ∞
0 F I,M (t)dFI,MD(t)

h
′

G,G(0)
, (20)

Optimizing Security Measures in an Intrusion Tolerant Database System 33

where

h
′

G,G(0) = lim
s→0

dhG,G(s)
ds

= μG,I +
∫ ∞

0
F I,MD(t)F I,M (t)dt

+(μM,R + μR,G)
∫ ∞

0
F I,MD(t)dFI,M (t)

+(μMD,MR + μMR,G)
∫ ∞

0
F I,M (t)dFI,MD(t). (21)

In this context, the automatic detection mode is randomly switched to the
manual detection mode. Differently from Wang and Liu [28], we introduce the
time limit to turn on the manual detection, t0 (0 ≤ t0 < ∞), periodically
and call it the switching time. If the automatic detection is switched to the
manual detection, then the system state goes to I from MD. Without any loss
of generality, we define the transition probability from I to MD by

FI,MD(t) =
⎧
⎨

⎩

1 (t ≥ t0)
0 (t < t0).

(22)

This means that the detection mode can be switched from the automatic mode
to the manual model at every t0 time unit. Then the steady-state probabilities
in Eqs.(15)-(20) are represented as functions of t0 by

PG =
μG,I

T (t0)
, (23)

PI =

∫ t0
0 F I,M (t)dt

T (t0)
, (24)

PM =
μM,RFI,M (t0)

T (t0)
, (25)

PR =
μR,GFI,M (t0)

T (t0)
, (26)

PMD =
μMD,MRF I,M (t0)

T (t0)
, (27)

PMR =
μMR,GF I,M (t0)

T (t0)
, (28)

where

T (t0) = μG,I +
∫ t0

0
F I,M (t)dt + (μM,R + μR,G)FI,M (t0)

+(μMD,MR + μMR,G)F I,M (t0) (29)

is the mean recurrent time from state G to state G and denotes the mean time
length of one cycle in the recurrent CTSMC.

34 T. Uemura and T. Dohi

4 Security Measures

4.1 System Availability

The most popular quantitative measure among system-level dependability and
security measures would be the system availability, which is defined as the proba-
bility that the ITDB is operative in the steady state. From the result in Section 3,
since the operative state for the system is only state G in Fig.2, the system avail-
ability is given by AV (t0) = μG,I/T (t0) as a fraction of time when the ITDB is
operative in the steady state, from its renewal structure. Then, the problem is
to derive the optimal switching time t∗0 maximizing AV (t0). For the purpose, we
make the following parametric assumption:

(A-1) μMR,G > μM,R + μR,G.

In (A-1), it is assumed that the time length to detect an intrusion automatically
is strictly shorter than that by the manual detection. This seems to be intuitively
validated from the viewpoint of the utility in automatic detection.

Proposition 1: (1) Suppose that the c.d.f. FI,M (t) is strictly DHR (decreasing
hazard rate) under (A-1), i.e., the hazard rate

rI,M (t) =
fI,M (t)
F I,M (t)

(30)

is strictly decreasing in t, where fI,M (t) = dFI,M (t)/dt. Define the func-
tion:

qAV (t0) = −μG,I

[
1 +

{
(μM,R + μR,G) − (μMD,MR + μMR,G)

}
rI,M (t0)

]
.

(31)
(i) If qAV (0) > 0 and qAV (∞) < 0, then there exists a finite and unique

optimal switching time t∗0 (0 < t∗0 < ∞) satisfying qAV (t∗0) = 0.
(ii) If qAV (0) ≤ 0, then t∗0 = 0, i.e., the manual detection is always

optimal and the corresponding system availability is given by

AV (0) =
μG,I

μG,I + μMD,MR + μMR,G
. (32)

(iii) If qAV (∞) ≥ 0, then t∗0 → ∞, i.e., the automatic detection is always
optimal and the corresponding system availability is given by

AV (∞) =
μG,I

μG,I + μI,M + μM,R + μR,G
. (33)

(2) Suppose that the c.d.f. FI,M (t) is IHR (increasing hazard rate) under
(A-1), i.e., the function rI,M (t) is increasing in t. If AV (0) > AV (∞),
then t∗0 = 0 otherwise t∗0 → ∞.

Optimizing Security Measures in an Intrusion Tolerant Database System 35

Proof: Taking the differantiation of AV (t0) with respect to t0 and setting it
equal to zero 0 imply qAV (t0) = 0. Further, we have

dqAV (t0)
dt0

= −drI,M (t0)
dt

μI,M{(μM,R + μR,G) − (μMD,MR + μMR,G)}.(34)

In the strictly DHR case, the right-hand side of Eq.(34) takes a negative
value under (A-1) and the function qAV (t0) is strictly decreasing in t0. That
is, the function AV (t0) is a quasi-convex function of t0. If qAV (0) > 0 and
qAV (∞) < 0, then the function qAV (t0) crosses the zero level once, and there
exists a finite and unique optimal switching time t∗0 (0 < t∗0 < ∞) satisfying
qAV (t∗0) = 0. If qAV (0) ≤ (≥) 0, then the function qAV (t0) takes a negative
(positive) value, and the optimal switching time should be t∗0 = 0 (t∗0 → ∞).
On the othet hand, in the IHR case, the result is trivial. Q.E.D.

Although the system availability is one of significant dependability and security
measures, it does not take account of the quality of data in the ITDB. In the
security profile for database systems, it is more important to keep all accessible
data clean rather than increasing the fraction of operative time. In other words,
it is not sufficient to consider only the system availability in designing the system
security for the ITDB.

4.2 System Integrity

Wang and Liu [28] defined the system integrity as a fraction of time when all
accessible data items in the database are clean. As mentioned previously in
Section 1, the integrity is regarded as one of the most typical security attributes
in addition to authentication and non-repudiation. When the integrity is high,
the ITDS can serve the users by utilizing the good or clean data with high
probability. In Fig. 2, all data items in the ITDB are clean and accessible in
state G. When attacks occur, some data items will be affected and the part of
accessible data items in state I may be dirty. After the intrusion is identified,
the ITDB can contain all the damaged data until it finishes the repair process.
In this situation, the ITDB carries out the selective containment and repair,
and is still available, so that the accessible data items are clean during the
containment, damage assessment and repair process. In Fig. 2, since the system
states under consideration are G, M , R and MR, the system integrity is defined
by IN(t0) = UIN (t0)/T (t0), where

UIN (t0) = μG,I + (μM,R + μR,G)FI,M (t0) + μMR,GF I,M (t0). (35)

The following result can characterize the optimal switching time maximizing the
system integrity.

Proposition 2: (1) Suppose that the c.d.f. FI,M (t) is strictly DHR under
(A-1). Define the function:

36 T. Uemura and T. Dohi

qIN (t0) = (μM,R + μR,G − μMR,G)rI,M (t0)TIN (t0) −
[
1 + {(μM,R

+μR,G) − (μMD,MR + μMR,G)}rI,M (t0)
]
UIN(t0). (36)

(i) If qIN (0) > 0 and qIN (∞) < 0, then there exists a finite and unique
optimal switching time t∗0 (0 < t∗0 < ∞) satisfying qIN (t∗0) = 0 and
the corresponding system integrity is given by

IN(t∗0) =
(μM,R + μR,G − μMR,G)rI,M (t∗0)

1 + {(μM,R + μR,G) − (μMD,MR + μMR,G)}rI,M (t∗0)
.

(37)
(ii) If qIN (0) ≤ 0, then t∗0 = 0 and the corresponding system integrity

is given by

IN(0) =
μG,I + μMR,G

μG,I + μMD,MR + μMR,G
. (38)

(iii) If qIN (∞) ≥ 0, then t∗0 → ∞ and the corresponding system in-
tegrity is given by

IN(∞) =
μG,I + μM,R + μR,G

μG,I + μI,M + μM,R + μR,G
. (39)

(2) Suppose that the c.d.f. FI,M (t) is IHR under (A-1). If IN(0) > IN(∞),
then t∗0 = 0 otherwise t∗0 → ∞.

The proof is omitted from the similarity to Proposition 1. For the actual manage-
ment of database systems, it is more significant to keep the clean and accessible
data. So, when the quality of data is considered, the system integrity should be
the more attractive security measure than the system availability.

4.3 Rewarding Availability

The system availability is defined as a fraction of time when the ITDB is provid-
ing services to its users, and does not care the quality of data. Since the ITDB
performs the on-the-fly repair and will not stop its service faced by attacks, it
can be expected that the corresponding system availability is nearly 100% in al-
most all cases. For better evaluation of the security attribute in the ITDB, Wang
and Liu [28] considered another type of availability, called rewarding availability,
which is defined as a fraction of time when all the clean data items are accessible.
If the clean data can not be accessed in the ITDB, it can be regarded as a serious
loss of service to users. Dissimilar to the system integrity, since the system states
under consideration are G, R and MR, the rewarding availability is defined by
RA(t0) = URA(t0)/T (t0), where

URA(t0) = μG,I + μR,GFI,M (t0) + μMR,GF I,M (t0). (40)

We give the characterization result on the optimal switching time maximizing
the rewarding availability without the proof.

Optimizing Security Measures in an Intrusion Tolerant Database System 37

Proposition 3: (1) Suppose that the c.d.f. FI,M (t) is strictly DHR under
(A-1). Define the function:

qRA(t0) = (μR,G − μMR,G)rI,M (t0)T (t0) −
[
1 + {(μM,R + μR,G)

−(μMD,MR + μMR,G)}rI,M (t0)
]
URA(t0). (41)

(i) If qRA(0) > 0 and qRA(∞) < 0, then there exists a finite and unique
optimal switching time t∗0 (0 < t∗0 < ∞) satisfying qRA(t∗0) = 0 and
the corresponding rewarding availability is given by

RA(t∗0) =
(μR,G − μMR,G)rI,M (t∗0)

1 + {(μM,R + μR,G) − (μMD,MR + μMR,G)}rI,M (t∗0)
.

(42)
(ii) If qRA(0) ≤ 0, then t∗0 = 0 and the corresponding rewarding avail-

ability is given by

RA(0) =
μG,I + μMR,G

μG,I + μMD,MR + μMR,G
. (43)

(iii) If qRA(∞) ≥ 0, then t∗0 → ∞ and the corresponding rewarding
availability is given by

RA(∞) =
μG,I + μR,G

μG,I + μI,M + μM,R + μR,G
. (44)

(2) Suppose that the c.d.f. FI,M (t) is IHR under (A-1). If RA(0) > RA(∞),
then t∗0 = 0 otherwise t∗0 → ∞.

In this section, we optimized the three security measures for the ITDB and
derived the optimal switching times for respective quantitative criteria. In the
following section, we will give some numerical examples, and calculate the opti-
mal switching policies and their associated security measures.

5 Numerical Illustrations

5.1 Parameter Set

We focus on both the system integrity and the rewarding availability, and treat
the database management system with Oracle 9i server in [28]. Although the
security model in [28] was based on a simple CTMC, we here assume that the
c.d.f. FI,M (t) is given by the Weibull distribution with scale parameter η and
shape parameter m:

FI,M (t) = 1 − exp{−(t/η)m}. (45)

This assumption implies that the transition time from an intrusion to the con-
tainment sate is DHR (m ≤ 1) or IHR (m ≥ 1), and can represent the more
general transition phenomena. When m = 1, it reduces to the exponential distri-
bution with constant hazard rate. The other transition rates from state i to state

38 T. Uemura and T. Dohi

Table 1. Model parameters

Parameters Values

attack hitting rate (λa) 0.5 (low); 1 (moderate); 5 (heavy)
detection rate (λI,M) 10 (slow); 15 (medium); 20 (fast)
marking rate (λM,R) 27
repair rate (λR,G) 22

manual detection rate (λMD,MR) 0.02
manual repair rate (λMR,G) 0.02

false alarm rate (α) 10%, 20%, 50%

j are assumed to constant, i.e., 1/μi,j = λi,j (i, j ∈ {G, I, M, R, MD, MR}, i �=
j), except for (i, j) = (I, M). In particular, we introduce the attack hitting rate
λα and the false alarm rate α as Wang and Liu [28] did so. It should be noted
that the intrusion detector in Fig. 1 will warn the system user of malicious at-
tacks/intrusions as well as the system failure in case of a false alarm. Let Ta

and Tfa be the intrusion time and the system failure time measured from time
t = 0 in state G, and be the exponentially distributed random variables with
parameters λa and α, respectively. Then the function FG,I(t) is regarded as the
c.d.f. of the random variable min{Ta, Tfa} and is the exponential c.d.f. with pa-
rameter λa + α. Table 1 presents the model parameters used in this example,
where they are almost same in [28]. We set m = 0.2, and choose η so as to satisfy
μI,M = ηΓ (1 + 1/m).

5.2 System Integrity

Table 2 presents the maximized system integrity for varying model parameters,
where t0 → ∞ implies the non-manual detection policy. From this table, it is
seen that the optimal control of the switching time to the manual detection mode
leads to the 2.8% ∼ 35.5% improvement of system integrity. In this numerical
example, it can be observed that the periodic control of the switching to the man-
ual detection mode and the rapid containment/repair from the damage due to
attacks or intrusions are quite important factors to increase the system integrity.
On the mean reaction time μMD,MR + μMR,G in the manual detection mode,
when it increases monotonically, the resulting switching time t∗0 also increases
so far. In Fig.3, we plot the behavior of the system integrity with respect to the
attack hitting rate and the false alarm rate. From this result, it can be seen that
the system integrity increases to 0.2% ∼ 1.4% (1.3 × 10−2% ∼ 0.16%) when the
attack hitting rate (false alarm rate) decreases. This result can be explained in
the following; the system integrity can increase when the total operation time of
the ITDB becomes longer with the lower attack hitting rate or when the ITDB
tends to become more robust with the lower false alarm rate.

5.3 Rewarding Availability

Similar to Subsection 5.2, we examine the dependence of model parameters on
the optimal switching time and its associated rewarding availability in Table 3.

Optimizing Security Measures in an Intrusion Tolerant Database System 39

Table 2. Maximizing system integrity for varying model parameters

(λI,M , λa, α) t0 → ∞ t∗
0 IN(t∗

0) increment (%)
(10,0.5,10) 0.9459 104.3340 0.9975 5.4505
(10,0.5,20) 0.9379 104.2810 0.9971 6.3067
(10,0.5,50) 0.9154 104.1290 0.9959 8.7926
(10,1.0,10) 0.9084 104.0800 0.9955 9.5949
(10,1.0,20) 0.9016 104.0310 0.9952 10.3845
(10,1.0,50) 0.8822 103.8900 0.9941 12.6801
(10,5.0,10) 0.7358 102.5530 0.9841 33.7328
(10,5.0,20) 0.7332 102.5240 0.9839 34.1875
(10,5.0,50) 0.7255 102.4370 0.9832 35.5193
(15,0.5,10) 0.9633 115.7010 0.9991 3.7195
(15,0.5,20) 0.9577 115.6810 0.9990 4.3050
(15,0.5,50) 0.9420 115.6220 0.9986 6.0068
(15,1.0,10) 0.9370 115.6030 0.9984 6.5567
(15,1.0,20) 0.9321 115.5850 0.9983 7.0981
(15,1.0,50) 0.9183 115.5300 0.9979 8.6738
(15,5.0,10) 0.8069 115.0200 0.9944 23.2411
(15,5.0,20) 0.8048 115.0080 0.9944 23.5581
(15,5.0,50) 0.7986 114.9760 0.9941 24.4872
(20,0.5,10) 0.9722 124.4060 0.9996 2.8182
(20,0.5,20) 0.9680 124.3960 0.9995 3.2620
(20,0.5,50) 0.9559 124.3680 0.9994 4.5527
(20,1.0,10) 0.9520 124.3590 0.9993 4.9698
(20,1.0,20) 0.9482 124.3500 0.9993 5.3805
(20,1.0,50) 0.9374 124.3240 0.9991 6.5764
(20,5.0,10) 0.8478 124.0820 0.9975 17.6578
(20,5.0,20) 0.8461 124.0770 0.9975 17.8994
(20,5.0,50) 0.8409 124.0620 0.9974 18.6079

1
2

3
4

5

10
20

30 40 50

0.985

0.99

0.995

1
2

3
4

5

10
20

30 40 50

λa

α
IN(t0)

Fig. 3. Behavior of system integrity
with respect to λa and α

1
2

3
4

5

10
20

30 40 50

0.75

0.8

0.85

0.9

1
2

3
4

5

10
20

30 40 50

λa

α
RA(t0)

Fig. 4. Behavior of rewarding availabil-
ity with respect to λa and α

From this table, it can be found that the periodic control of the switching to
the manual detection mode enables us to increase the rewarding availability up
to 0.2% ∼ 12.3%. As the detection speed becomes faster, it can be increased
to 0.3% ∼ 3.9%. Figure 4 shows the behavior of rewarding availability on the
attack hitting rate and the false alarm, where the rewarding availability varies
in the ranges of 27.2% ∼ 32.8% and 1.7% ∼ 3.2% for α and λα, respectively.
Thus, the attack hitting rate is more sensitive than the false alarm rate not only
for the system integrity but also for the rewarding availability.

40 T. Uemura and T. Dohi

Table 3. Maximizing rewarding availability for varying model parameters

(λI,M , λa, α) t0 → ∞ t∗
0 RA(t∗

0) increment (%)
(10,0.5,10) 97.8264 0.9506 0.9259 2.6735
(10,0.5,20) 96.7376 0.9431 0.9149 3.0743
(10,0.5,50) 93.5265 0.9213 0.8841 4.2076
(10,1.0,10) 92.4741 0.9144 0.8745 4.5635
(10,1.0,20) 91.4302 0.9076 0.8651 4.9089
(10,1.0,50) 88.3487 0.8880 0.8386 5.8857
(10,5.0,10) 55.5619 0.7158 0.6380 12.1884
(10,5.0,20) 54.7108 0.7120 0.6344 12.2378
(10,5.0,50) 52.1533 0.7008 0.6238 12.3416
(15,0.5,10) 108.6100 0.9529 0.9429 1.0565
(15,0.5,20) 107.4660 0.9456 0.9343 1.2155
(15,0.5,50) 104.1020 0.9249 0.9098 1.6660
(15,1.0,10) 103.0030 0.9183 0.9020 1.8078
(15,1.0,20) 101.9140 0.9119 0.8944 1.9456
(15,1.0,50) 98.7091 0.8933 0.8729 2.3364
(15,5.0,10) 66.1144 0.7347 0.6996 5.0182
(15,5.0,20) 65.3302 0.7315 0.6963 5.0498
(15,5.0,50) 63.0064 0.7219 0.6867 5.1321
(20,0.5,10) 116.8210 0.9535 0.9516 0.1983
(20,0.5,20) 115.6110 0.9464 0.9442 0.2274
(20,0.5,50) 112.0580 0.9260 0.9231 0.3088
(20,1.0,10) 110.8970 0.9195 0.9164 0.3340
(20,1.0,20) 109.7490 0.9131 0.9099 0.3583
(20,1.0,50) 106.3720 0.8949 0.8911 0.4257
(20,5.0,10) 72.5066 0.7404 0.7351 0.7254
(20,5.0,20) 71.7090 0.7373 0.7320 0.7217
(20,5.0,50) 69.3535 0.7282 0.7231 0.7069

6 Conclusion

In this paper we have reconsidered an ITDB architecture of Wang and Liu [28]
and developed a CTSMC to assess the security measures such as system avail-
ability, system integrity and rewarding availability. Further, we have optimized
the switching times for maximizing the above measures and given the optimal
design methodologies in terms of intrusion tolerance. In numerical examples, we
have calculated the optimal switching times and their associated security mea-
sures, and carried out the sensitivity analysis on model parameters. As the lesson
learned from the numerical examples, it has been shown that the system integrity
and the rewarding availability could be improved by controlling appropriately
the switching times to the manual detection mode.

In the on-going research, we will evaluate quantitatively the other measures
in survivability in the ITDB. Since the survivability can be evaluated in the
same framework as performability [9,17], the CTSMC model developed in this
paper can still be useful for the analysis with different measures. Also, though we
focused on only the mediator subsystem as a proxy for each user transaction and
transaction processing call to the database system, the other part on dynamic
transaction processing such as the database system itself may be included for
modeling from the macroscopic point of view. Such an integrated model should
be developed by applying the semi-Markov analysis in the future.

Optimizing Security Measures in an Intrusion Tolerant Database System 41

References

1. Aung, K.M.M.: The optimum time to perform software rejuvenation for surviv-
ability. In: Proceedings of 7th IASTED International Conference on Software En-
gineering, pp. 292–296. ACTA Press (2004)

2. Aung, K.M.M., Park, K., Park, J.S.: A survivability model for cluster system. In:
Hobbs, M., Goscinski, A.M., Zhou, W. (eds.) ICA3PP 2005. LNCS, vol. 3719, pp.
73–82. Springer, Heidelberg (2005)

3. Deswarte, Y., Blain, L., Fabre, J.C.: Intrusion tolerance in distributed computing
systems. In: Proceedings of 1991 IEEE Symposium on Research in Security and
Privacy, pp. 110–121. IEEE CS Press, Los Alamitos (1991)

4. Ellison, R., Linger, R., Longstaff, T., Mead, M.: Survivability network system anal-
ysis: a case study. IEEE Software 16(4), 70–77 (1999)

5. Guputa, V., Lam, V., Ramasamy, H.V., Sanders, W.H., Singh, S.: Dependability
and performance evaluation of intrusion-tolerant server architectures. In: de Lemos,
R., Weber, T.S., Camargo Jr., J.B. (eds.) LADC 2003. LNCS, vol. 2847, pp. 81–101.
Springer, Heidelberg (2003)

6. Imaizumi, M., Kimura, M., Yasui, K.: Reliability analysis of a network server sys-
tem with illegal access. In: Yun, W.Y., Dohi, T. (eds.) Advanced Reliability Mod-
eling II, pp. 40–47. World Scientific, Singapore (2006)

7. Jha, S., Wing, J., Linger, R., Longstaff, T.: Survivability analysis of network spec-
ifications. In: Proceedings of 30th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, DSN 2000, pp. 613–622. IEEE CS Press, Los
Alamitos (2000)

8. Jha, S., Wing, J.M.: Survivability analysis of network systems. In: Proceedings of
the 23rd International Conference on Software Engineering, ICSE-2001, pp. 307–
317. IEEE CS Press, Los Alamitos (2001)

9. Jindal, V., Dharmaraja, S., Trivedi, K.S.: Analytical survivability model for fault
tolerant cellular networks supporting multiple services. In: Proceedings of Interna-
tional Symposium on Performance Evaluation of Computer and Telecommunica-
tion Systems, SPECTS 2006, pp. 505–512. IEEE Press, Los Alamitos (2006)

10. Jonsson, E., Olovsson, T.: A quantitative model of the security intrusion process
based on attacker behavior. IEEE Transactions on Software Engineering 23(4),
235–245 (1997)

11. Littlewood, B., Brocklehurst, S., Fenton, N., Mellor, P., Page, S., Wright, D., Do-
boson, J., McDermid, J., Gollmann, D.: Towards operational measures of computer
security. Journal of Computer Security 2(2/3), 211–229 (1993)

12. Liu, P.: Architectures for intrusion tolerant database systems. In: Proceedings of
18th Annual Computer Security Applications Conference, ACSAC 2002, pp. 311–
320. IEEE CS Press, Los Alamitos (2002)

13. Liu, P., Jing, J., Luenam, P., Wang, Y., Li, L., Ingsriswang, S.: The design and im-
plementation of a self-healing database system. Journal of Intelligent Information
Systems 23(3), 247–269 (2004)

14. Liu, Y., Mendiratta, V.B., Trivedi, K.: Survivability analysis of telephone access
network. In: Proceedings of 15th International Symposium on Software Reliability
Engineering (ISSRE 2004), pp. 367–377. IEEE CS Press, Los Alamitos (2004)

15. Madan, B.B., Goseva-Popstojanova, K., Vaidyanathan, K., Trivedi, K.S.: Modeling
and quantification of security attributes of software systems. In: Proceedings of
32nd Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN 2002), pp. 505–514. IEEE CS Press, Los Alamitos (2002)

42 T. Uemura and T. Dohi

16. Madan, B.B., Goseva-Popstojanova, K., Vaidyanathan, K., Trivedi, K.S.: A method
for modeling and quantifying the security attributes of intrusion tolerant systems.
Performance Evaluation 56(1/4), 167–186 (2004)

17. Nikol, D.M., Sanders, W.H., Trivedi, K.S.: Model-based evaluation: from depend-
ability to security. IEEE Transactions on Dependability and Secure Comput-
ing 1(1), 48–65 (2004)

18. Ortalo, R., Deswarte, Y., Kaaniche, M.: Experimenting with quantitative evalu-
ation tools for monitoring operational security. IEEE Transactions on Software
Engineering 25(5), 633–650 (1999)

19. Park, J.S., Aung, K.M.M.: Transient time analysis of network security survivability
using DEVS. In: Kim, T.G. (ed.) AIS 2004. LNCS (LNAI), vol. 3397, pp. 607–616.
Springer, Heidelberg (2005)

20. Paul, K., Choudhuri, R.R., Bandyopadhyay, S.: Survivability analysis of ad
hoc wireless network architecture mobile and wireless communications networks.
In: Omidyar, C.G. (ed.) MWCN 2000 and NETWORKING-WS 2000. LNCS,
vol. 1818, pp. 31–46. Springer, Heidelberg (2000)

21. Qu, Y., Lin, C., Li, Y., Shan, Z.: Survivability analysis of grid resource management
system topology. In: Zhuge, H., Fox, G.C. (eds.) GCC 2005. LNCS, vol. 3795, pp.
738–743. Springer, Heidelberg (2005)

22. Singh, S., Cukier, M., Sanders, W.H.: Probabilistic validation of an intrusion tol-
erant replication system. In: Proceedings of 33rd Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN 2003), pp. 615–624. IEEE
CS Press, Los Alamitos (2003)

23. Stevens, F., Courtney, T., Singh, S., Agbaria, A., Meyer, J.F., Sanders, W.H.,
Pal, P.: Model-based validation of an intrusion-tolerant information system. In:
Proceedings of 23rd IEEE Reliable Distributed Systems Symposium (SRDS 2004),
pp. 184–194. IEEE CS Press, Los Alamitos (2004)

24. Stroud, R., Welch, I., Warne, J., Ryan, P.: A qualitative analysis of the intrusion-
tolerant capabilities of the MAFTIA architecture. In: Proceedings of 34th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN
2004), pp. 453–461. IEEE CS Press, Los Alamitos (2004)

25. Uemura, T., Dohi, T.: Quantitative evaluation of intrusion tolerant systems subject
to DoS attacks via semi-Markov cost models. In: Denko, M.K., Shih, C.-s., Li, K.-
C., Tsao, S.-L., Zeng, Q.-A., Park, S.H., Ko, Y.-B., Hung, S.-H., Park, J.H. (eds.)
EUC-WS 2007. LNCS, vol. 4809, pp. 31–42. Springer, Heidelberg (2007)

26. Verissimo, P.E., Neves, N.F., Correia, M.: Intrusion-tolerant architectures: con-
cepts and design. In: de Lemos, R., Gacek, C., Romanovsky, A. (eds.) Architecting
Dependable Systems. LNCS, vol. 2677, pp. 3–36. Springer, Heidelberg (2003)

27. Verissimo, P.E., Neves, N.F., Cachin, C., Poritz, J., Powell, D., Deswarte, Y.,
Stroud, R., Welch, I.: Intrusion-tolerant middleware. IEEE Security and Pri-
vacy 4(4), 54–62 (2006)

28. Wang, H., Liu, P.: Modeling and evaluating the survivability of an intrusion tolerant
database system. In: Gollmann, D., Meier, J., Sabelfeld, A. (eds.) ESORICS 2006.
LNCS, vol. 4189, pp. 207–224. Springer, Heidelberg (2006)

29. Yu, M., Liu, P., Zang, W.: Self-healing workflow systems under attacks. In: Proceed-
ings of 24th International Conference on Distributed Computing Systems (ICDCS
2004), pp. 418–425. IEEE CS Press, Los Alamitos (2004)

The Impact of Unavailability on the

Effectiveness of Enterprise Information Security
Technologies�

Simon Edward Parkin, Rouaa Yassin Kassab, and Aad van Moorsel

School of Computing, Newcastle University
Claremont Tower, NE1 7RU, Newcastle upon Tyne

{s.e.parkin,rouaa.yassin-kassab,aad.vanmoorsel}@newcastle.ac.uk

Abstract. This paper surveys existing enterprise technologies that con-
trol access to confidential digital data, and analyzes the impact of sys-
tem and staff unavailability on the obtained security. The researched
technologies allow restrictions to be placed on copying, editing, viewing
and printing from within various software applications, provide audit-
ing options and prevent outsider access through encryption. We discuss
USB access control solutions, digital rights management software, disk
encryption techniques and operating system solutions, respectively. An
interesting aspect of the various technologies is their reliance on the co-
operation of various people and system components, thus making it vul-
nerable to unavailability of these people and components. Two opposite
effects (security risk and productivity loss) determine the effectiveness
of information security technologies, and we analyze the impact of un-
availability of resources on both these metrics.

1 Introduction

Recently published data suggests that some of the most serious IT threats orga-
nizations face relate to the theft and careless distribution of data by employees.
[9] suggests that the greatest information security threats within an organization
are leakage of confidential information and distortion of sensitive information.
These threats have the potential to damage company reputations and impact
upon the potential customer base [9], as well as inviting sanctions by indus-
trial regulatory bodies [9]. One of the contributing factors is the ease with which
data can be copied and carried. By 2006 at least two-thirds of office workers [2,4]
owned a removable storage device (e.g. USB memory stick, media player etc.),
and some 70% of workers connected a removable storage device to a company
PC on a daily basis [2]. Portable storage devices are one of the major conduits of

� Supported in part by: UK Department of Trade and Industry, grant nr. P0007E
(‘Trust Economics’), UK EPSRC platform grant EP/D037743/1 (‘Networked Com-
puting in Inter-Organisation Settings’), EU network of excellence 026764 (‘ReSIST:
Resilience for Survivability in IST’) and EU coordination action 216295 (‘AMBER:
Assessing, Measuring, and Benchmarking Resilience’).

T. Nanya et al. (Eds.): ISAS 2008, LNCS 5017, pp. 43–58, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

44 S.E. Parkin, R. Yassin Kassab, and A. van Moorsel

data leakage within Europe [9]. Following from this, 70% of all security breaches
originate from inside company networks [2], with 60% of incidents caused by hu-
man error [2]. Furthermore, it is estimated that two-thirds of USB sticks are lost
by their owners, with 20% of these devices containing sensitive information [2].
Over 50% of IT professionals feel that EU legislation should require businesses
to protect any personal data they retain from threats internal to the company.
Proposed solutions include the deployment of consistent internal security policies
and tools to realize such policies.

Although the above numbers should be considered with care (the publishing
source may be biased, and/or the data is reported in a way that does not lend
itself to scientific validation), the above suggests a growing security problem.
Recent news items, such as the loss of CDs with personal data of millions of UK
citizens further illustrate the risks [27]. The following example of an employee
using a removable USB storage device illustrates key points relating to enterprise
information security. It is feasible to imagine the use, by operations staff, of
USB memory sticks to store company/confidential data whilst outside of the
company’s environment. A typical problem might be that a staff member buys a
memory stick from a high-street store, saves confidential or sensitive data onto
it on Friday afternoon, and reloads the data to the system on Monday morning.
Over the weekend, the stick may have been exposed to a range of highly insecure,
potentially corrupted environments.

This previous use case alludes to requirements both within and outside the
associated working environment. Access control measures must be taken to limit
the risks to enterprises and the public, but the danger exists that such measures
may negatively influence the productivity of employees. If an access control so-
lution proves to be less than transparent, it may influence the behavior patterns
of those users that it directly affects. For example, access to a secured device
may be restricted to environments operating the same company-controlled access
control software, which may make ‘working from home’ infeasible. In this paper
we analyze this trade-off between security improvement and productivity loss, in
particular with respect to the reliability of the chosen access control measures.

In this paper we first survey current information security technologies. These
technologies are all available as industrial products, using well-established soft-
ware security and management solutions. By putting these technologies into
perspective we can analyze their respective strengths and weaknesses. We note
that this survey is a synopsis of a more detailed Newcastle University technical
report [19]. We focus here on the main technologies that we believe will remain
valid for considerable time to come, leaving out most of the product comparisons
and pricing schemes one can find in [19].

From our survey, it will become clear that the discussed information secu-
rity technologies can be quite involved, requiring systems such as directories and
client applets to be deployed, protected devices to be networked, and administra-
tive staff to be present to deal with policy exceptions. From the perspective of the
IT administrators, information security is offered as a service to the users within
an enterprise, with requirements for the reliability and availability of various

The Impact of Unavailability on Information Security 45

components as well as the help desk. From the user perspective, the service may
potentially be regarded as a hindrance, and almost per definition introduces
overhead in many routine work-related activities. Thus, a trade-off between se-
curity improvement and productivity loss must be considered when introducing
such technologies into the enterprise. In this paper we study the influence of com-
ponent and people unavailability on this trade-off decision. We believe that the
proposed analysis may present a useful tool when making investment decisions
about reliability improvements and help desk staffing.

This paper is organized as follows. We survey technologies in four categories:
USB access control solutions in Section 2, digital rights management solutions
(Section 3), disk encryption solutions (Section 4) and operating system solutions
(Section 5). Section 6 summarizes the capabilities of the technologies visited in
the preceding sections, while discussing outstanding and introduced vulnerabil-
ities. Section 7 then provides the unavailability impact analysis on the effective-
ness of information security solutions.

2 USB Access Control Solutions

USB access control software is primarily concerned with how removable data-
storage devices interact with the computer network operated by an organiza-
tion, and how the associated physical connection endpoints can be secured and
brought under control of the organization. Using these technologies users of an
enterprise network and the company data therein should adhere to a unified
device access policy dictated from within the organization, thereby providing
predictable, manageable behavior amongst the associated workforce.

The principal driving factor of the considered technologies is prevention of
data theft from within an organization [5,22,25]. This is closely coupled with
preventing the injection of unsolicited content into the network (as promoted by
[8]). Compliance with regulatory standards and copyright laws is also highlighted
[20,22,24]. [10] also promotes endpoint access control as a means of limiting the
maintenance overhead introduced by unauthorized devices. Coverage is provided
to control access to other USB device endpoints (such as Firewire and writeable
CD drives), and remote-communication channels such as WiFi and Bluetooth.

The considered technologies install from a centralized security station, sending
client-side installations directly to user workstations. Most products suggest that
they actively attempt to deploy as little logic as possible upon user workstations
[3,8,10]. Deployment in this way assumes that all computers connected to an
organization network are centrally managed. There is also an assumption that
corporations have dedicated IT security staff available at all times. Control of
access permissions by IT personnel is centralized (typically through a dedicated
software-based management console). If this central management system were to
fail, company-wide data security policies may become inconsistent or inoperable.

The timely deployment of per-user or per-device access controls relies upon
the availability of specialized staff. However, one can automate access policies
applicable to groups of users and known device types. Common (i.e. predictable)

46 S.E. Parkin, R. Yassin Kassab, and A. van Moorsel

Fig. 1. Centralized administration of end-user workstations

working practices, with static user access permissions, can be controlled in this
way without intervention from administrative staff. Policy exceptions (e.g. a need
to correct improper policy clauses or to add a new device type upon request)
would however require action by the appropriate IT personnel.

Many products employ ‘white-list’ and ‘black-list’ approaches to device access
(Fig. 2), which can respectively be used to explicitly include or exclude devices
within an organization’s device access schemes. This allows access policies to be
reused across different user accounts or user groups. Administrative personnel
are however required to maintain these lists.

A number of USB access control solutions [5,10,11,20,22,24] incorporate file-
type filtering techniques to limit the types of files that can be transferred to
removable media. Filtering schemes are defined by administrators and enacted at
user workstations local to the access endpoints. These technologies can prohibit
executable files or ‘autorun’ programs from being copied to or executed from
removable storage devices. Such precautions are prudent in the face of threats
to the company network from malicious software, but if managed inappropriately
may not accommodate legitimate use of a program from a device (e.g. an in-house
prototype application).

The USB access restriction technologies deal with the possibility that employ-
ees will try to exploit the enterprise network from within, regardless of whether
they hold the appropriate access permissions. End users may also unintention-
ally access files that they should not have been able to. If recorded, these events
can be analyzed and prevented from reoccurring. As such, audit trails of device
and file access are generated, such as which devices were connected to which

The Impact of Unavailability on Information Security 47

Fig. 2. ‘White list’ and ‘black list’ device access control

ports, and which files were accessed by which users. Duplications of copied data
are also retained, should they be needed as evidence against employees during
any subsequent legal action against them.

Facilities to encrypt data before it is transferred to removable storage devices
(either automatically or after prompting end users) are also being used, and
often even facilitate access to encrypted data outside of the work environment
[3,5,20,24]. Use of encryption essentially extends the reach of the enterprise,
securing data in such a way that it can only be accessed in accordance with an
organization’s data access policies.

Most technologies provide for employees needing to gain legitimate, tempo-
rary access to a device otherwise prohibited by their assigned access rights, or
gain access to a protected device from a machine that is outside of the control of
the organization. With the latter it is assumed that the central policy server can
be contacted from the subject machine through a network connection. Prod-
ucts offer distinct methods for achieving offline access to secured devices. For
instance [3] and [25] permit temporary access to secured devices through phone
conversations with IT administrators (to obtain an access code). This relies
on the availability of administrative staff, and is not directly integrated with
enterprise-wide access management; it is not clear whether the details of phone
conversations are synchronized with device access logs. Others [22] provide of-
fline device access through a specialized utility carried with data when a device
is encrypted, essentially re-appropriating the device as a self-enclosed, encrypted
store.

48 S.E. Parkin, R. Yassin Kassab, and A. van Moorsel

All of the USB access control products reviewed support only the Microsoft
Windows family of operating systems (generally the 2000/XP range, and the
NT4/2003 Server derivations). There is limited support for the Microsoft Win-
dows Vista platform (as provided by [22,24], for example), and Novell eDirec-
tory (exhibited by [5,20,24]). There is no support for the Macintosh OS or Linux
platforms. Efforts have been made to seamlessly integrate products with the
Windows platform through the extension of existing functionality. Products in-
tegrate directly with Windows Active Directory [13], binding the latter’s access
management directory services with file and device access permissions.

3 Digital Rights Management (DRM) Solutions

The technologies described in this section are concerned with enforcing data
management and intellectual property policies, so as to maintain lawful business
practices and structured data control. The focus is less on how devices that may
contain company files are managed, and more so on how company data contained
within individual files is secured in a manner which is both logical and can be
persisted for as long as the associated data exists. As such, these technologies may
be employed to describe and enforce levels of access to sensitive and protected
company file content that correspond to the access rights of members or groups of
staff. They are aimed at securing specific types of electronic documents, and are
intended for use by those subsets of employees working with ‘office’ documents
(e.g. word processor or spreadsheet files).

The technologies in this section aim to ensure that the content of confidential
files is only available to those persons that have the correct privileges. Centralized
access rights are associated with company files. Access schemes for individual
files persist with those files regardless of whether they reside within the enter-
prise network, on a removable data storage device, or on a computer that is
not controlled by the organization. [18] extends the applicability of document
security by including capabilities to track the use of sensitive enterprise data
both within and outside the company network. [1] provides content integrity as
a means to manage intellectual property, adding document signing and water-
marking capabilities.

As with the USB access control solutions, all of the products described in this
section are centrally managed. All of the permissions associated with a particular
document are stored in a centralized location within the organization. With an
emphasis on data security, the technologies [18,28] audit end user access to pro-
tected files. Audited information includes details of successful and attempted file
access events, including the identified user, the time of the event, the application
that was used, and the location of the accessed file.

Content control products are primarily concerned with restricting the editing,
copying, storage, and printing of protected file contents. All these technologies
provide role based access schemes, and incorporate encryption as a means of
securing the contents of confidential files. Some, such as [18], require users to

The Impact of Unavailability on Information Security 49

‘log in’ to protected files, either with a dedicated password or automatically with
their Windows user account information. Others, such as [1], provide extensive
authentication capabilities, including the ability to associate digital certificates
or watermarking attributes to encrypted files. Emphasis is placed on how secu-
rity policies remain associated with the subject file, with an expectation that
files will be transferred between secure and insecure locations. With [18] access
identities have configurable and enforceable offline periods, thereby accommo-
dating the mobility of employees. Sealed documents can be created and accessed
through use of dedicated creation and reader applications. [1] integrates authen-
tication measures directly into a protected document, with the expectation that
secured files may be transferred across different storage devices and across differ-
ent realms of authority. [1] can also create ‘secure teams’ of employees, allowing
collaboration with external companies regarding file content.

4 Disk Encryption Solutions

Disk encryption solutions protect the contents of hard drives from unauthorized
users while also ensuring that contents are not compromised and transported to
external storage devices.

There exist several variations of disk encryption technologies. [26] is a disk
encryption solution with the capability to encrypt an entire hard disk partition
or a storage device such as a USB flash drive. [7] is a hard disk encryption
application which automatically encrypts and decrypts data as it moves to and
from an encrypted drive. [23] concentrates on securing confidential data as it
travels between individuals. The argument here is that data is only at risk when
it is being transported, be that via removable media (such as USB storage devices
or CDs) or e-mails.

[7] and [23] provide role based access schemes, whereas with [26] users are
prompted for access passwords or key files whenever they mount a protected
drive. [23] encrypts files in a self-contained manner, so no additional software is
required to access the file at a later date. [7] incorporates features such as secure
data wiping, and management of the programs permitted to access secured data.
For example, employees may be granted access to a file, but without the ability
to simultaneously run file copying programs.

With [26] if there is a need to access a TrueCrypt volume simultaneously
from multiple operating systems, an encrypted volume can either be mounted
or dismounted on a single computer (e.g. a server), to allow decrypted or en-
crypted shared access to drive contents respectively, as appropriate. Options are
available in [23] to create self-extracting secured files, which are then associated
with an integrated password authentication application. [26] can run in so-called
‘traveler’ mode, so that it does not have to be directly installed on the platform
under which it is run. [7] provides USB disk portability, in that it can be used
with USB storage drives, DVDs, portable media players etc.

50 S.E. Parkin, R. Yassin Kassab, and A. van Moorsel

5 Operating System Solutions

It is worth investigating whether any of the access control or digital rights man-
agement functionality (as discussed in Sections 2 and 3) is available within cur-
rent operating systems. If it were it would be possible that the features required
by a company may be integrated into the operating system they already use,
negating the purchase and maintenance of additional applications.

Microsoft Windows Vista. The latest version of the Microsoft Windows op-
erating system, Windows Vista [14], provides additional functionality for the
control of both copyrighted material and stored data. It is the belief of Microsoft
that next generation multimedia content such as BluRay will see greater adop-
tion over the next few years [21]. Windows Vista incorporates what is called the
Protected Media Path (PMP) to ensure that protected (i.e. copyright-controlled)
content can be accessed correctly. Documentation states that high definition con-
tent is “valuable content that needs to be protected from stealing”, and that as
such “each content type has its own particular policy that defines what the user
can and cannot do with it”.

Windows Vista provides group policy settings to define end user access per-
missions for removable storage devices (e.g. USB and other removable media,
CD/DVD drives) [16]. An administrator can apply policies to control whether
users are able to read from or write to removable storage devices.

Microsoft Windows Vista enterprise and Ultimate editions include BitLocker
drive encryption [17]. With BitLocker the entire Windows volume is encrypted
to prevent unauthorized users from gaining access to hard drive contents. The
Encrypting File System can also be used to encrypt files and folders to pro-
tect data from unauthorized access. Although not a part of the Windows Vista
operating system, the Microsoft Windows Office 2003 suite of applications pro-
vides features for information rights management [15]. Office 2003 documents
(specifically files created in Microsoft Word 2003, Microsoft Excel 2003 or Mi-
crosoft Powerpoint 2003) can have restrictions associated with them to control
the actions that particular users can enact on protected files.

Microsoft Windows XP also incorporates Encrypting File System. Windows
XP can also be augmented with the Windows Rights Management Service [12],
allowing centrally managed permissions to be associated with Microsoft Office
documents.

Other Operating Platforms. Similar functionality to that described in Mi-
crosoft Windows Vista (i.e. centralized document access control, device access
control, off-line drive protection etc.) is not immediately available on the Mac-
intosh OS or Linux platforms.

6 Discussion of Technologies

The main features of the various information security technologies we have re-
viewed can be found in Table 1. We now close our survey of technologies by

The Impact of Unavailability on Information Security 51

Table 1. Summary of features offered for different information security solutions

Operating Adminis-
Platform tration Coverage Monitoring Encryption

Access Windows Central Devices, Audit Files,
Control Programs Trails Portable Drives

DRM Windows Central Files, Audit Files
File Content Trails

Disk Windows, Local Fixed Disks, None Drives
Encryption Linux Portable Disks

Operating Windows Central, Files, None Drives
System Local Devices,

Programs

discussing particular complications that may arise from introducing any of the
discussed technologies into an enterprise network. These complications have the
potential to restrict employee productivity or otherwise leave existing vulnera-
bilities in conventional working practices unresolved.

Centralized Administration. All of the access control solutions that were exam-
ined follow a model of centralized control, wherein access policies are recorded at
a single location from which they are pushed to end users whenever they inter-
act with the network. This approach maintains consistent, manageable security
policies, but in itself can create problems. It is assumed that all workstations
with access to secured company data are accessible from any location within
the company network. Where employees are working with sensitive files, it is
assumed those files can be secured from a remote location without consultation
with the end user.

Local Agents. There is the potential for locally deployed security software agents
on end user workstations to fail. ‘Failure’ may be regarded as the product inter-
acting with the local software platform in an unpredictable manner, or otherwise
not providing a level of adaptability that the end user is comfortable with (for
instance if they regularly require atypical security permissions).

Centralized Policy Management. Although centralized policy management pro-
vides for a consistent data security environment, it limits the control that end
users have with regards to their own access rights. If an employee has a genuine
and legitimate requirement for a specific access permission not already asso-
ciated with their user account, they must rely on IT personnel to accurately
provide the relevant permissions in a timely manner. Even the most expedient
procedures could not achieve this without causing some delay to the end user.

In what follows, we will analyze the impact of these issues (particularly compo-
nent failure and staff unavailability) on the effectiveness of information security
solutions.

52 S.E. Parkin, R. Yassin Kassab, and A. van Moorsel

7 Unavailability Impact Analysis

7.1 Trade-Offs

The software solutions described in this document purport to solve a variety of
data protection problems in the workplace. These include prohibiting improper
use of USB (and other) endpoints, securing confidential document content, and
securing data at rest within the company network. If an organization is to con-
sider purchasing products to resolve the latter issues, there are associated factors
that must be assessed.

System and Support. The great majority of products require that user pro-
files and resources within a company network be centrally managed. In order to
ensure timely deployment and management of access permissions amongst em-
ployees, it is necessary to have appropriate numbers of IT staff to regulate user
access rights and permissions relating to new and differing storage media or file
content. To further ensure that a central management system is kept functional
and responsive, it may be necessary to incorporate some level of redundancy
into the company network. Without this, if parts of the network were to cease
functioning correctly, employee productivity may be limited or inconsistencies
in the network-wide access control scheme may be introduced.

Productivity Loss. Employee productivity may be hindered by deployment of a
chosen software solution. End users may find that their normal work routines
need to be altered, or that completely new ways of interacting with the network
need to be developed. Adapting to new network procedures may take time away
from other areas of work, or could potentially sway employees away from their
normal work routines entirely.

In what follows, we first quantify productivity loss, and look at how unavailability
of system and support influences the productivity loss metrics. Then we discuss
the trade-off between increased security and productivity loss. In both cases,
we use probabilistic/stochastic modelling to describe the interactions between
technologies, users and staff, relying on the Möbius software [6] to create and
solve the models.

7.2 Productivity Loss

Fig. 3 shows a model representing access control technologies as discussed in Sec-
tion 2 and Section 3. For ease of explanation, Fig. 3 shows the simplest model
we used; more complicated versions of the depicted stochastic activity network
(a formalism used in [6]) were necessary to derive the results in the next sub-
section. The flow of the users can easily be understood from Fig. 3 when fol-
lowing the arcs. There exist a number of active users (‘Active Users’), which
exercise the local PC protection software (‘LocalSW’) at a certain frequency
(given by ‘Security Check’). It takes some time to do the local software check
(given by the time taken by ‘Searching Success1’), and after completion two

The Impact of Unavailability on Information Security 53

Fig. 3. Stochastic Activity Network of USB access control (base scenario)

things can happen. When the check was resolved correctly, the user returns to the
active mode, while if the check was not resolved correctly, the global directory
(‘Global Directory’) is called. Some time is taken to perform the check at the
global directory (activity ‘Searching Success2’), after which again two things
may happen. When the check is resolved correctly at the global directory, the
user returns to the active user mode, while if the check is not resolved correctly,
the administrative staff has to be contacted (‘Admin Staff’). There again the
user spends some time, but we assume in the base model that success is then
guaranteed, and the user can return to active user mode (in the next section we
relax that assumption). The model also accounts for failures and repairs of the
global directory (activities ‘fail’ and ‘repair’ between the places ‘Directory up’
and ‘Directory down’) and the presence and absence of staff (activities ‘leave’
and ‘back’ between the places ‘Staff Present’ and ‘Staff leave’).

The time scale of the model is in minutes. We assume that each user interacts
with the access control technologies once every 10 minutes on average and the
software spends about 5 seconds doing the local check. In one percent of the cases,
we assume the global directory is called; this number may vary a lot depending
on the specific product, see Section 2. At the global directory about one minute is
spent on average to determine execution rights. Again, one percent of requests is
not resolved at the global directory, at which time administrative staff is called.
The staff is assumed to spend 30 minutes on an average call. Note that the

54 S.E. Parkin, R. Yassin Kassab, and A. van Moorsel

above implies that only one in ten thousand interactions with the access control
solution end up at administrative staff, and that each individual user calls staff
only once per year on average (to be precise, once every one hundred thousand
active minutes). In the base scenario, the global database goes down once per
three working days for an average of ten minutes, while staff takes a break once
every four hours for thirty minutes. (Of course, all parameter choices need to be
adjusted for the case at hand when applying the model in practice.)

In our model we increase the number of users up to tens of thousands, using
a discrete approximation to keep the state space limited. That is, we assume
100 active users circle around in the model, each representing a group of users
as determined by a model multiplier. By incorporating the multiplier correctly
in the various transition rates, we can approximate the behavior of a system
with tens of thousands of users by a model that has less than one million states.
Arguably, one million states is still a considerable amount, but easily manageable
with tools such as [6].

To measure the productivity loss, we compute the fraction of time a user
spends in any place other than ‘Active Users’, since this can be considered time
‘wasted’ because of access control technologies. Fig. 4 shows the results, for up to
25,000 employees (users). One sees that once the number of employees rises above
two thousand, the system starts to deteriorate. For less than several hundreds of
employees, the productivity loss is limited to one percent of an employee’s time.
For a company with 1000 employees, the productivity loss is about two percent,
while for 3000 users the productivity loss rises above ten percent, and continues
increasing when the number of users increases further.

Some back-of-the-envelope calculations based on above mentioned rates reveal
that the staff presence is the bottleneck once the number of employees increases

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

50 10
0

20
0

40
0

80
0

16
00

32
00

64
00

12
80

0

25
60

0

Fig. 4. Number of Employees (x-axis) versus Productivity Loss as a Fraction of Work
Time (y-axis)

The Impact of Unavailability on Information Security 55

0

0.01

0.02

0.03

0.04
0.05

0.06

0.07

0.08

0.09

0.1

15
m

in
.

30
m

in
.

1
ho

ur

2
ho

urs

4
ho

urs

8
ho

urs

16
 h
our

s

Fig. 5. Time between Staff Leaving (x-axis) versus Productivity Loss as a Fraction of
Work Time (y-axis)

beyond one or two thousand. In our second experiment, we set the number of
users to one thousand, and look at the sensitivity of employee productivity to
the availability of staff to help when called. Note that one thousand employees
amounts to less than one staff involvement per hour. Fig. 5 plots the productivity
loss depending on the frequency with which staff leaves (and is absent for about
30 minutes); that is, the left-most data point in the graph depicts a staff member
departing every 15 minutes. We see in Fig. 5 that as soon as staff members
are interrupted every two hours or less, productivity starts to degrade for this
particular scenario. In a similar way, results for multiple staff members can be
derived, and decisions about the right number of staff members for an enterprise
can be derived.

7.3 Departing Users

In the second model we assume that users are not as patient as in the above base
model. In the above model, no matter how long the requests are queued in the
global directory, or how long the administrative staff is on leave, the user waits
for the access control solution to take a decision. In this subsection, we assume
that when resources are unavailable (i.e. down or occupied), users leave the access
control system; in such a case, the interesting question is what could or should
happen with the task the employee wanted to carry out. At the one extreme,
such failed interactions with the access control solution result in the employee
not being able to do their task, thus seriously impairing the productivity of an
employee. At the other extreme, the user is allowed to complete the task, thus
seriously impairing security. In between these two extremes, the employee may
be given the power to decide for him or herself; in some settings, this may be

56 S.E. Parkin, R. Yassin Kassab, and A. van Moorsel

0

1

2

3

4

5

6

7

20
0

40
0

80
0

16
00

32
00

64
00

12
80

0

25
60

0

Fig. 6. Number of Employees (x-axis) versus total Number of Failed Interactions with
the Access Control System per minute (y-axis)

an appropriate corporate strategy, best balancing the trade-off between security
improvement and productivity loss.

To quantify the trade-off between productivity loss because of terminating
requests, we consider each individual interaction with the access control system,
and determine if it completes or fails. We show in Fig. 6 the number of instances
per time unit in which the interaction with the access control solution fails, and
the employee either cannot complete its work, or must make a decision him or
herself. The question thus becomes, for an enterprise with 25 thousand employ-
ees, how important are these 6 uncompleted interactions every minute, and how
much damage can they potential do if we let the employee make the decision
what to do next. As a rule, the employee should not decide if for an average
interaction the expected cost cp because of productivity loss is less than the ex-
pected cost cs because of security impairment. So, if p is the probability that an
employee makes the right decision when forced to do so, then one should allow
the employee to make that decision if cp < (1−p).cs. It should be noted that the
access control system is introduced exactly because the probability p is in general
not believed to be high enough. In other words, assuming the introduction of the
access control system was a financially appropriate decision, allowing employees
to make individual decisions makes sense only if employees make more careful de-
cisions in the remaining cases in which the system delegates the decision-making
to the user. Note furthermore that the trade-off between security enhancements
and productivity loss can be decided yet better if attack modes and attack mode
probabilities are known, and if the risk cs can be identified for all these different
attack modes.

The Impact of Unavailability on Information Security 57

8 Conclusion

A variety of enterprise information technologies have emerged over recent years,
‘productized’ by many different vendors. It seems therefore appropriate at this
time to survey the available access control solutions, and evaluate their strengths
and weaknesses. This paper does so. Since the great majority of the technologies
examined in this document use centralized administration models to consistently
manage role and group based access to critical company data, these solutions
depend on the availability of computing and people resources. We built a proba-
bilistic model and illustrated how the model can be used to determine the impact
of system and staffing availability on the achieved security as well as the loss
of productivity. It can also be used to improve staffing decisions as well as IT
resource decisions.

Acknowledgements

Comments and feedback from our partners in the ‘Trust Economics’ project
(UK Department of Trade and Industry, grant nr. P0007E) has substantially
contributed to the technical report [19] on which this paper is based.

References

1. Avoco Secure Limited, Secure2Trust (as viewed 09/05/07),
www.avocosecure.com/html pages/products/secure2trust.html

2. Centennial Software, Gone in Sixty Seconds: The Executive Guide to Internal Data
Theft (2006) (as viewed 29/07/07),
www.centennial-software.com/resources/whitepapers/?product=2

3. Centennial Software, DeviceWall Product Info (as viewed 09/05/07),
www.devicewall.com/pro/

4. Charlesworth, A.: Data theft by employees ‘commonplace’ (as viewed 29/07/07),
www.vnunet.com/vnunet/news/2165309/theft-employees-commonplace

5. Check Point Software Technologies Inc., Pointsec Protector (as viewed 10/05/07),
www.checkpoint.com/products/datasecurity/protector/index.html

6. Clark, G., Courtney, T., Daly, D., Deavours, D., Derisavi, S., Doyle, J.M., Sanders,
W.H., Webster, P.: The Möbius Modeling Tool. In: Proceedings of the 9th Inter-
national Workshop on Petri Nets and Performance Models, Aachen, Germany,
September 11-14, 2001, pp. 241–250 (2001)

7. Dekart, Private Disk (as viewed 20/06/07),
www.dekart.com/products/encryption/private disk/

8. GFI Software, GFI EndPoint Security (as viewed 09/05/07),
http://www.gfi.com/endpointsecurity/

9. Infowatch, Internal IT Threats in Europe 2006 (as viewed 29/07/07),
www.infowatch.com/threats?chapter=162971949\&id=207784668

10. Layton Technology, DeviceShield (as viewed 20/06/07),
www.laytontechnology.com/pages/deviceshield.asp

11. McAfee Inc., McAfee Data Loss Prevention (as viewed 20/06/07),
www.mcafee.com/us/enterprise/products/data loss prevention/
data loss prevention.html

www.avocosecure.com/html_pages/products/secure2trust.html
www.centennial-software.com/resources/whitepapers/?product=2
www.devicewall.com/pro/
www.vnunet.com/vnunet/news/2165309/theft-employees-commonplace
www.checkpoint.com/products/datasecurity/protector/index.html
www.dekart.com/products/encryption/private_disk/
http://www.gfi.com/endpointsecurity/
www.infowatch.com/threats?chapter=162971949&id=207784668
www.laytontechnology.com/pages/deviceshield.asp
file:www.mcafee.com/us/enterprise/products/data_loss_prevention/data_loss_prevention.html
file:www.mcafee.com/us/enterprise/products/data_loss_prevention/data_loss_prevention.html

58 S.E. Parkin, R. Yassin Kassab, and A. van Moorsel

12. Microsoft Corporation, Windows Rights Management Services (as viewed
20/06/07), www.microsoft.com/windowsserver2003/technologies/rightsmgmt/
default.mspx

13. Microsoft Corporation, Windows Server 2003 Active Directory (as viewed
02/06/07), www.microsoft.com/windowsserver2003/technologies/directory/
activedirectory/default.mspx

14. Microsoft Corporation, Windows Vista Home Page (as viewed 18/07/07),
www.microsoft.com/windows/products/windowsvista/default.mspx

15. Microsoft Corporation, About Information Rights Management (as viewed
20/06/07), office.microsoft.com/en-us/help/HP062208591033.aspx

16. Microsoft Corporation, Step-By-Step Guide to Controlling Device Installation and
Usage with Group Policy (as viewed 20/06/07), www.microsoft.com/technet/
windowsvista/library/9fe5bf05-a4a9-44e2-a0c3-b4b4eaaa37f3.mspx

17. Microsoft Corporation, Windows Vista Security Guide Chapter 3: Protect Sensitive
Data (as viewed 20/06/07), http://www.microsoft.com/technet/windowsvista/
security/protect sensitive data.mspx

18. Oracle Corporation, Oracle Information Rights Management (as viewed 09/05/07),
www.oracle.com/products/middleware/content-management/
information-rights-management.html

19. Parkin, S.E., van Moorsel, A.: A Trust-economic Perspective on Information Se-
curity Technologies, Technical Report CS-TR:1056, School of Computing Science,
Newcastle University (October 2007)

20. Reflex Magnetics, Reflex Magnetics Disknet Pro (as viewed 09/05/07),
www.reflex-magnetics.co.uk/products/disknetpro/

21. Russinovich, M.: Windows Administration: Inside the Windows Vista Kernel:
Part 3 (as viewed 18/07/07), www.microsoft.com/technet/technetmag/issues/
2007/04/VistaKernel/default.aspx

22. Safend Ltd., Safend Protector (as viewed 10/05/07),
www.safend.com/65-en/Safend%20Protector.aspx

23. SafeNet Inc., SafeNet ProtectPack (as viewed 09/05/07),
www.safenet-inc.com/products/data at rest protection/ProtectPack.asp

24. SecureWave, SecureWave Sanctuary Device Control (as viewed 09/05/07),
www.securewave.com/usb security.jsp

25. Smartline Inc., DeviceLock (as viewed 09/05/07), www.protect-me.com/dl/
26. TrueCrypt Foundation, TrueCrypt (as viewed 20/06/07), www.truecrypt.org/
27. Wattanajantra, A.: Data Thefts and Losses in the UK-Timeline (as viewed January

25, 2008), www.itpro.co.uk/news/158184/
data-thefts-and-losses-in-the-uk-timeline.html

28. Workshare Inc., Workshare Protect (as viewed 09/05/07),
www.workshare.com/products/wsprotect/default.aspx

file:www.microsoft.com/windowsserver2003/technologies/rightsmgmt/default.mspx
file:www.microsoft.com/windowsserver2003/technologies/rightsmgmt/default.mspx
file:www.microsoft.com/windowsserver2003/technologies/directory/activedirectory/default.mspx
file:www.microsoft.com/windowsserver2003/technologies/directory/activedirectory/default.mspx
www.microsoft.com/windows/products/windowsvista/default.mspx
office.microsoft.com/en-us/help/HP062208591033.aspx
file:www.microsoft.com/technet/windowsvista/library/9fe5bf05-a4a9-44e2-a0c3-b4b4eaaa37f3.mspx
file:www.microsoft.com/technet/windowsvista/library/9fe5bf05-a4a9-44e2-a0c3-b4b4eaaa37f3.mspx
http://www.microsoft.com/technet/windowsvista/security/protect_sensitive_data.mspx
http://www.microsoft.com/technet/windowsvista/security/protect_sensitive_data.mspx
file:www.oracle.com/products/middleware/content-management/information-rights-management.html
file:www.oracle.com/products/middleware/content-management/information-rights-management.html
www.reflex-magnetics.co.uk/products/disknetpro/
file:www.microsoft.com/technet/technetmag/issues/2007/04/VistaKernel/default.aspx
file:www.microsoft.com/technet/technetmag/issues/2007/04/VistaKernel/default.aspx
www.safend.com/65-en/Safend%20Protector.aspx
www.safenet-inc.com/products/data_at_rest_protection/ProtectPack.asp
www.securewave.com/usb_security.jsp
www.protect-me.com/dl/
www.truecrypt.org/
file:www.itpro.co.uk/news/158184/data-thefts-and-losses-in-the-uk-timeline.html
file:www.itpro.co.uk/news/158184/data-thefts-and-losses-in-the-uk-timeline.html
www.workshare.com/products/wsprotect/default.aspx

Interaction Faults Caused by Third-Party

External Systems — A Case Study and
Challenges

Bogdan Tomoyuki Nassu and Takashi Nanya

Research Center for Advanced Science and Technology (RCAST)
The University of Tokyo

4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
{bogdan,nanya}@hal.rcast.u-tokyo.ac.jp

Abstract. Interaction faults caused by a flawed external system de-
signed by a third party are a major issue faced by interconnected sys-
tems. In this paper, we define a scenario where this type of problem
occurs, and describe some fault cases observed in real systems. We also
discuss the most important challenges faced in this scenario, focusing on
error detection. The problem is divided in several sub-problems, some of
which can be addressed by traditional or simple techniques, and some of
which are complex problems by themselves. The purpose of this paper is
not to present ad hoc solutions to specific sub-problems, but to introduce
a new scenario and give general approaches to address each sub-problem.
That includes a detailed insight on important concepts, such as implicit
redundancies. With this, we lay down the foundations for a wide range
of future work.

Keywords: Interaction Faults, Error Detection, Case Study, Communi-
cation Protocols, Fault Model.

1 Introduction

More and more, networked systems built from interconnected sub-systems
become widespread. The Internet reach is already worldwide, and consumer elec-
tronics companies now aim at devices which connect to each other to form ubiq-
uitous systems [1,2]. Networked systems like these are not monolithic blocks,
and sub-systems may be designed by independent parties. Communication is
achieved by the means of standards, which must be implemented by all the sub-
systems. However, as these standards become more complex, problems such as
misinterpreted specifications or insufficient testing may result in a sub-system
being released with an incorrect or incomplete implementation of a commu-
nication standard. When communicating, these flawed sub-systems may cause
interaction faults, hindering or halting system services.

One common solution used in this situation is designing more robust commu-
nication standards, to be implemented by future systems. Though this is very
important, it only affects future systems, and current faulty sub-systems remain

T. Nanya et al. (Eds.): ISAS 2008, LNCS 5017, pp. 59–74, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

60 B.T. Nassu and T. Nanya

faulty. Besides that, the new communication standards may also be badly imple-
mented — leaving the problem unsolved. Another common solution is replacing
or fixing the faulty sub-system. However, this is not always feasible in practice,
as the sub-systems may be designed and controlled by different parties. Further-
more, consumers are not always willing or able to replace the sub-systems.

Therefore, a sub-system must be designed so that it is able to deal with in-
teraction faults originated from third-party external systems. It must be at least
protected so that interaction faults do not cause data loss or other hazardous
effects. Ideally, the faults should be detected, or even tolerated, so that they do
not affect the system’s services from a user’s point of view. Fault tolerance in this
scenario must cope with some restrictions: the fault-tolerant sub-system cannot
rely on cooperation from an external sub-system which does not implement its
expected function, and must tolerate faults without changing the standard or
the faulty sub-system itself.

In this paper, we detail a scenario where interaction faults are caused by
a third-party external system, and describe some fault cases observed in real
systems. We also discuss the most important challenges to be addressed, with
special focus on error detection. The problem is divided in several sub-problems,
shown in figure 1. Though some of these sub-problems can be addressed by
existing techniques, others are complex problems by themselves. The purpose
of this paper is not to present ad hoc solutions to specific sub-problems, but
to introduce a new scenario and give general ideas about how to deal with
each sub-problem. Special attention is given to new sub-problems that cannot
be fully solved by existing techniques, as well as important concepts, such as
implicit redundancies. With this, we lay down the foundations for a wide range
of future work. A preliminary version of this work has appeared in [3].

The remainder of this paper is organized as follows. In section 2, the system
and fault models are defined, and a case study is described. In section 3, we
discuss the challenges for error detection in our scenario. Section 4 concludes
the paper.

Fig. 1. Error detection sub-problems

Interaction Faults Caused by Third-Party External Systems 61

2 Scenario Description and a Case Study

In this section, the considered system and fault models are defined. We also
illustrate the scenario by describing a case study based on actual field data.

2.1 System Model

We consider a networked system built from sub-systems, or units, which use a
communication standard to interact. Interaction occurs with the exchange of a
sequence of messages, each containing a set of data fields. Each field contains
data of a certain type (string, positive integer, monetary value, etc.); and is
identified by a name (“Action”, “Connections”, “Price”, etc.). A field can be
delimited by headers, tags, position, etc., depending on the standard.

A system in its simplest form consists of two units, one of which is a third-
party external unit. The other system is ideally designed to tolerate faults, and
is called the adaptable unit. We assume that no faults are originated from the
adaptable unit — our focus is on faults caused by an external unit, and designing
a unit capable of tolerating its own faults is a different problem. To further
isolate the problem, we restrict faults to a single standard, which can be in any
level above the physical layer. Any protocols below the considered standard are
abstracted as a fault-free “communication interface”. Note, however, that faults
can propagate to higher layers. Figure 2 illustrates the system model.

Fig. 2. System model

2.2 Errors Caused by Interaction Faults

In our scenario, faults manifest themselves when the external unit exhibits a
behavior that deviates from the specification of the standard (which is assumed
to be correct); or when it sends a message containing incorrect data. As we
assume the standard runs over a fault-free communication interface, we do not
consider faults caused by transmission errors in the physical layer. That means,

62 B.T. Nassu and T. Nanya

for example, messages are not corrupted or lost in the communication channel,
but are indeed generated containing incorrect data or are not sent.

Following the classification from reference [4], we deal with interaction faults,
as they are originated from an external unit. As these faults are usually caused
by a flawed implementation of the standard, they could be mistakenly seen
as design faults. Indeed, if only the external unit is considered, they are design
faults, but they make the external unit fail in operation time, becoming the cause
of interaction faults in the top-level system. The faults can also be considered
permanent — a fixed external unit is seen as a different unit.

Interaction faults may result in several types of errors. As the adaptable unit
does not have direct access to the flawed implementation of the standard, the
errors are described in terms of what can be observed outside the external unit,
i.e. the messages it sends (or fails to send). Most error types are well-known, as
they are also caused by other types of faults. We define the following classification
for the errors:

– Omission: the external unit does not send a message it was expected to
send.

– Timing: the external unit sends a message out of expected timing con-
straints.

– Sequence: the external unit sends a message out of the expected sequence.
– Data Errors: occur if a message is correctly received, but contain errors.

There are four types of data errors:
• Message Formatting: the message is not properly formatted. This

type of error refers to the message, not to data inside fields.
• Missing Data: a mandatory data field is missing.
• Data Syntax: a field contains an unacceptable value for its data type

(e.g. invalid characters).
• Inconsistent Value: a field contains a syntactically correct value, but

it is inconsistent with what it should represent — i.e. it is incorrect
regarding the semantics of the field. A message may be also considered
inconsistent if it contains correctly formatted fields indicating a state or
situation different from reality. Examples include:

∗ A field called “Number of Users” contains a valid integer, but the
integer does not correspond to the actual number of users.

∗ A query request for a variable is issued, and a correctly formatted
response is received, but the response does not correspond to the
requested variable.

∗ A correctly formatted error message is received, but the described
error did not occur.

– Action Error: this general category is used for errors that cannot be ob-
served in the messages sent by the external unit. In fact, every error can be
seen as the result of an incorrect action, but this category is used when all
the messages are correctly received and contain correct data.

Note that these types of errors may occur in protocols in any layer of the
communication, though they have different characteristics. For example, timing

Interaction Faults Caused by Third-Party External Systems 63

Fig. 3. Errors grouped by category

constraints are usually more strict in lower layers, but timing errors may oc-
cur even in the application level. Another example: inconsistent values in lower
layers may be represented by inverted bits, but in the application layer, they
are represented by arbitrary strings, or even incorrect images or audio data. De-
pending on the specific standard, some error types occur more frequently than
others, and some will never occur — for example, in some standards there is no
distinction between timing and omission errors.

Figure 3 show the error categories and how they relate. Omission is a spe-
cial case of timing error (infinite delay), sequence error (the sequence is not
respected) and missing data (all data is missing).

2.3 A Case Study

A good way of validating a fault model is checking how well it can represent a
large base of real fault cases [5,6]. Unfortunately, obtaining a large number of
real fault cases is also difficult in some scenarios. In this work, we do not validate
the fault model by comparing it to field data in a large amount — this remains
as an open problem to be addressed in the future. Even so, we have analyzed a
number of real fault cases in order to get some insight on particularities of our
scenario1.

The analyzed data consists of reports of faults found during the design phase
of some devices, including captured communication logs in pcap [7] format. The
1 This data was gently provided by Matsushita Electric Industrial Co., Ltd.

64 B.T. Nassu and T. Nanya

Fig. 4. Typical fault case setting

devices communicate using Universal Plug-and-Play (UPnP) [8,2] — an archi-
tecture for service exchange between electronic devices; based on well-known
protocols, such as IP, HTTP and XML, as well as some specialized protocols.
In the fault cases, devices such as a network camera, a printer or a television
interact with commercially available UPnP internet routers, specified in refer-
ence [9]. These third-party routers exhibited a faulty behavior when interacting
with the other devices, and are the external units in our system model. Figure 4
shows a typical fault case setting.

We have analyzed 14 fault cases which resulted in 6 omissions and 17 in-
consistent values — several errors may occur in a same fault case. Below, we
summarize the characteristics of the observed errors. For space reasons, the de-
tails of the analysis are not included. Descriptions 1–3 refer to the omission cases,
the remaining descriptions refer to inconsistent values.

1. In 2 fault cases, the adaptable unit sends a search message and receives an
error message in the ICMP layer. However, the described errors are caused
by the external unit, and not by a bad request. If the considered protocol
was in the lower-level layer, the error would be an inconsistent value. As the
message never reaches the UPnP layer, it is considered an omission.

2. In 3 fault cases, the adaptable unit sends a search message, but does not
receive any response.

3. In 1 fault case, the adaptable unit sends an action request, but does not
receive any response.

Interaction Faults Caused by Third-Party External Systems 65

4. In 1 fault case, the external unit has a valid external IP address, but all the
requests for a GetExternalIPAddress action receive the value ”0.0.0.0” in
the response field.

5. In 5 fault cases, an AddPortMapping action is requested, and an error mes-
sage is received, indicating a conflict between the requested port mapping
and an existing mapping, or invalid arguments in the request. Though the
error message is correct itself, it indicates a conflict when there is no conflict
at all, or invalid arguments event though the request is correct. It can be
considered that all the fields indicating the error status are inconsistent with
the real state of the external unit or with the issued request.

6. In 4 fault cases, the actions received expected error messages as responses.
These error messages were expected because they correctly indicated the
actions could not be performed considering the internal state of the external
unit. However, the error messages contained error codes and/or descriptions
which were not suitable for the requested actions. In one case, the error
description actually seems to be only a sequence of meaningless arbitrary
characters.

7. In 2 fault cases, a port mapping is requested and added. However, a later
request for the GetSpecificPortMappingEntry action returns an error mes-
sage or a different mapping than the one which was added — i.e. the response
is inconsistent with the real mapping.

8. In 4 fault cases, a field contains a numeric value outside the specified range.
9. In 1 fault case, a meaningless string is received in the HTTP CONTENT-TYPE

header.

Even though the number of analyzed cases is quite small, some preliminary
conclusions can be taken from this analysis:

– First and foremost, inconsistent values seem to be rather common in practice,
at least in this particular system instance (considering UPnP routers). On
the other hand, besides omissions, other error types were not observed.

– An error in a lower-level layer may result in another error of a different type
in an upper layer. Even if each standard is considered independent from
the lower layers, when an adaptable unit is designed, all the layers must be
individually considered.

– Several errors do not lead to failures that affect service availability in the
system — this is specially true for some descriptive fields that are not used
by the correct unit and for some out-of-range values that are used without
testing.

– All the errors are repeated if a specific external unit receives the same se-
quence of messages. In some cases, different correct units try to perform the
same actions, and the same errors occur — i.e. an error is repeated if certain
conditions are repeated. That observation is compatible with the idea that
interaction faults may be caused by design faults in the external unit.

66 B.T. Nassu and T. Nanya

3 Challenges for Error Detection

The problem of detecting errors caused by interaction faults was previously
addressed mainly aiming at specific faults or applications, in an ad hoc manner.
In this paper, we seek general principles that can be used to detect errors, instead
of focusing on such ad hoc solutions. Another common way of dealing with this
problem is designing more robust (or safer, if the faults are malicious) protocols,
or simply fixing or replacing the faulty unit. However, updating or fixing the
standard in existing systems is often not feasible, for economic and practical
reasons; and users are not always willing or able to replace the unit.

Before anything, it is necessary to ensure the adaptable unit is correct itself.
To this purpose, techniques such as interoperability testing [10], as well as any
other software engineering technique used to guarantee a protocol is implemented
as specified, are of vital importance. More than this, the adaptable unit must
be protected from incorrect inputs that may cause data loss or other hazardous
effects. This is a well-known problem, and several techniques for defensive pro-
gramming are already used in practice [11]. However, these techniques aim at
removing design faults (bugs) and vulnerabilities from a system. Our work aim
at a different problem: assuming a system correctly implements its specification
and is protected from harmful inputs, how can it detect errors originated from
a faulty external system?

Before any mechanism for error detection is specified, it is important to ob-
serve some restrictions imposed by the system model’s characteristics. These re-
strictions limit the choice of mechanisms for error detection, and some traditional
techniques [12] cannot be used, such as unit duplication, temporal redundancy
(retries), or offline test phases.

– The communication standard and the external unit cannot be changed. This
restriction exists because the standard has been already specified and is
(incorrectly) implemented by the external unit.

– Errors must be detected at runtime. This occurs because the external unit is
not part of the system being designed. Thus, the designer of the adaptable
unit has no control over the faulty implementation of the standard, and the
specific external unit is not known while the adaptable unit is being designed.

– The adaptable unit must rely on information locally available or provided by
the external unit. This occurs because in real settings, several interactions
occur only between a pair of units. Furthermore, protocols often do not
have any mechanism for voting or group communication — of course, if such
mechanisms are available, they may be used.

It is also important to notice that most standards already incorporate receiver-
based robustness techniques, which provide some degree of fault tolerance. For
example, TCP [13] uses timeouts and sliding windows to deal with omission and
sequence errors. Another example: in real-time transmission of voice over the
Internet [14], a unit can use buffers to deal with variable delays and generate
substitutions for lost packets. The schemes here described are to be employed
in addition to these techniques, to cover areas not addressed by the standard

Interaction Faults Caused by Third-Party External Systems 67

itself — specially because we assume the implementation is flawed in the exter-
nal unit. Even if it is not possible to tolerate every single fault, a reasonable
detection/correction coverage may prove valuable.

In the next subsections, several ideas for error detection are discussed. We di-
vide the error detection problem in several sub-problems, according to the types
of errors. Some sub-problems can be addressed by traditional or fairly simple
techniques, while others are more complex, and require further investigation fol-
lowing the directions presented in this paper. Figure 5 lists the identified error
detection sub-problems and summarizes the schemes to be employed, adding
more ramifications to the simplified view presented earlier in figure 1. The most
important challenges that must be addressed in the future are underlined. Before
discussing those schemes, we describe a concept that is of vital importance to
our work: implicit redundancies.

Fig. 5. Error detection sub-problems

3.1 Implicit Redundancies

Several communication standards incorporate error detection mechanisms based
on explicit redundancies, which are specified and used as such. However, some
protocols, specially complex high-level ones, also include “entropic” information,
in the form of seemingly unrelated events or data fields, but which are in fact
related to each other. In other words, sometimes a value received in a field gives

68 B.T. Nassu and T. Nanya

a “hint” about what can be expected in other fields, or in the same field during
other stages of the communication. This concept is not entirely new: implicit re-
dundancies are used to describe entropic information which can be extrapolated
to decode an encrypted message [15,16]. Implicit redundancies encode knowl-
edge about the communication standard and the type of data exchanged by the
units, and can be used to aid error detection, as well as error correction when
replacements for incorrect or missing data fields are needed.

Before implicit redundancies can be used, they must be located. The most
natural approach to this purpose is simply using the designer’s knowledge about
the problem domain. That approach is actually the same as the commonplace
practice of addressing error detection case-by-case: the designer writes error de-
tection functions based on relations he is aware of.

A way of enhancing this approach would be defining an intermediate, semi-
structured format to describe the communication standard. With this format,
the designer would be able to add his own knowledge about the problem to the
existing specification — e.g. by describing each field as a function of other fields.
However, this approach has several limitations. Converting the standard to a
semi-structured format is a complex job, and the designer may be unable to de-
scribe the standard and all the fields correctly. Locating all the existing relations
is also difficult, specially if the communication standard has many different types
of messages and data fields — for example, a single UPnP device may deal with
more than 250 different data fields [17]. Choosing only the most “important”
fields would result in an ad hoc solution.

Given those problems, approaches for automatically locating implicit redun-
dancies, based on examples of communications, are highly desirable. These ap-
proaches should be based on specific patterns that define relations between fields,
and are among the most important challenges to be faced before error detection
can be achieved in the proposed scenario.

3.2 Omissions and Timing Errors

Timing errors are traditionally detected by timers: a timer is triggered whenever
a message is expected, and if the message is not received before a given timeout,
the error is detected. Omission errors are detected the same way as timing errors,
but usually with larger timeouts. It is a known fact that, if unbounded commu-
nication delays are assumed, late and omitted messages are indistinguishable,
and some standards consider them to be the same, specially if there are strict
real time requirements.

In some cases, the adaptable unit cannot tell if a message must be received
— for example, the omitted search responses from the fault cases in section 2.3.
In these cases, the error is undetectable unless an ad hoc solution or at least
more information is provided by some implicit redundancy — e.g. user inputs
or specific patterns such as repeated searches, indicating a message should be
received.

Interaction Faults Caused by Third-Party External Systems 69

3.3 Sequence Errors

Sequence errors are traditionally detected by comparing the order of the mes-
sages with an expected communication pattern, or checking fields having sequen-
tial behavior, such as counters or sequence numbers.

3.4 Message Formatting Errors

Message formats fall in two major categories: low level (e.g. TCP, IP), with rigid,
bit level descriptions for the format, and high level (e.g. XML, HTML), with the
fields being delimited by tags or special characters. Low level formatting errors
are only detectable if the number of bits in the message is different from the
expected, in which case error detection is straightforward. Otherwise, as there are
no special delimiters for the fields, the error cannot be detected. In that case, a
formatting error can result in a data syntax or inconsistent value error, and must
be detected as such. High level message formats can be described by context-
free grammars [18] and similar rules. In these cases, errors are traditionally
detected by format parsers, pattern matching and auxiliary rules (e.g. XML
schemas).

3.5 Missing Data

A correct and complete specification of the standard, which we assume to be
the case, must state which fields are expected in each message. For low-level
identification schemes (e.g. if the fields have a fixed number of bits), a missing
field may result in a message with incorrect size. If the fields are delimited by
identifiers (e.g. XML tags), missing data can be detected by simple tests which
look for the expected tags. If the missing field is optional, the error is addressed
as an inconsistent value error — missing data refers only to required fields.

3.6 Data Syntax Errors

Data syntax errors are detected based on each data type. There are three basic
data types from which every type is derived from: numbers, strings and “others”.

Syntax Errors in Numbers. Numbers include signed and unsigned integers,
floating-point values, some representations for date and time, etc. We consider
only bit-level number representations, such as the two’s complement represen-
tation for signed integers — numbers represented as strings containing digits
and separators are addressed the same way as other strings. Error detection
for bit level number representations is impossible in most cases: usually, a field
generated with the incorrect syntax will still contain a syntactically correct, but
inconsistent, value. These errors should be addressed as inconsistent values.

Syntax Errors in Strings. Strings include any data type described by a se-
quence of characters, including names, IP addresses, URLs, text in natural lan-
guage, or even numbers. The syntax for string types can be described by reference

70 B.T. Nassu and T. Nanya

rules, and data syntax errors can be detected by comparing the received data
with the appropriate rules. However, in several cases, the specification of syntax
rules is not formal, being written in natural language; or is implicit or ignored,
based on the assumption that the type is well known. Besides that, even though
implementation of these syntax rules is usually not hard by itself, the number
of different data types in a single communication standard may be very large —
for example, a single UPnP device may deal with over 100 types of strings [17].

For the reasons above, in several occasions, designers are not able to success-
fully obtain syntax rules for every single type of data. In several real implemen-
tations, some subtleties are ignored, and the syntax is checked only in a very
basic level, for example, looking for invalid characters. In other cases, only the
most “important” types of data are addressed, resulting in an ad hoc solution
to the problem.

This problem may benefit from automatic methods for defining models to rep-
resent syntax rules. This is a type of implicit redundancy: the syntax is implicit
in the received data, and can be learned from examples. The learned syntax rules
may be given as a grammar, regular expression, pattern or even a non-human-
friendly model, such as an artificial neural network. This process of learning may
occur in design-time, involving only examples of data from each type, and not
necessarily communication examples.

This type of problem have been studied for several years by the grammar infer-
ence community [19], and has a solid theoretical foundation. Though traditional
and formal models have some disappointing or limited theoretical results [20,21],
this problem can be also addressed by other machine learning approaches, which
have been employed successfully for problems such as the identification of pat-
terns for sequences of genes [22]. As the general principles of grammar inference
are independent from the domain, they can also be used for identifying syntax
rules for string data types.

Other Syntax Errors. Though numbers and strings are the most common
types of data, there is a multitude of other formats used for audio, video, pictures,
etc. If the syntax for each type is defined, the rules for data syntax error detection
can be derived from the specification. Each particular type is specified in a
different manner, and though some types could benefit from the same techniques
used by strings, there is no single universal mechanism able to deal with these
differences.

3.7 Inconsistent Values

All the types of errors discussed so far share a characteristic: they can be detected
using exclusively information available in the specification of the communication
standard or data type. It is always specified when a message is expected, what are
the timing requirements and the sequence to be followed by the messages, which
is their format, and which fields and types of data are present. Inconsistent
values are different from other types of error because they are not detectable
using only information directly available from the specification: they include

Interaction Faults Caused by Third-Party External Systems 71

values that are accepted by the standard in a normal situation. That can make
inconsistent values very hard to detect.

To exemplify this situation, suppose an adaptable unit receives in a message a
field containing a value for international money remittance, named “amount to
send”. Suppose the minimum tax for international remittance is US$100.00, and
that the external unit sends a message with the (incorrect) value “US$2.00” in
this field. Though it is very unlikely that someone would make a money remit-
tance of US$2.00 and pay US$100.00 in taxes, the received value is syntactically
correct. The only way of detecting such an error is resorting to the semantics
of the task (international money remittance), data type (monetary value), field
(amount to send) and how it is associated with the concept of taxation.

An error detector for inconsistent values must incorporate knowledge about
the semantics of each task, data type and field. This knowledge is external, not
directly available from the specification, and it is common practice to address
this type of error in a case-by-case basis. In the money remittance example above,
the designer could deem that an amount is incorrect if it is below the tax (note
this is a naive solution).

To better explore external knowledge, error detectors for inconsistent values
may employ implicit redundancies. An error detector for inconsistent values must
have a set of functions that relate a given field with data observed in the past.
These relations may depend not only on the semantics of the performed task and
data types, but also on the context each value is received. There are two types
of relations that may be used to detect inconsistent values. The first type occurs
when a field is related to previously observed values, independent of the exact
sequence they appear. The second type occurs when a field is related with the
sequence of values received before it. The general approaches to identify these
types of implicit redundancies are described below.

To locate sequence-independent relations, the general principle is keeping a
history of data received earlier, from the same unit, from other units, or during a
design-time learning process. The values in the history are then used as a model
for expected values to be received in the future. When a new value is received,
it is compared to data in the history which has the same meaning. An error
is detected if the received data differs from what is expected, given a suitable
difference measure. This approach can become way more effective if each field
is further divided in smaller particles, or terms. In that case, instead of relating
only fields, the adaptable unit may also relate particles with the same meaning.
The learning process for numbers, strings and other types of data is as follows:

– Numbers: the adaptable unit uses data received previously to determine,
for each field, the expected value ranges and possibly the distribution of the
values. If a received value is outside the learned range or is very different from
the expected distribution (i.e. is an outlier), an error may be detected. In the
money remittance example presented earlier, the error could be detected if
no value as low as US$2.00 was ever received in the “amount to send” field
during previous communications. Numeric particles from string types may
also be addressed by this scheme.

72 B.T. Nassu and T. Nanya

– Strings: the adaptable unit uses data received previously to build a “dic-
tionary” containing known values for each field. Errors are detected if a
value is similar, but different, from a value present in the dictionary. If
the relations are between particles, the problem becomes very similar to
detecting spelling errors in search engines [23]. For example, suppose the
adaptable unit receives a field called “web page”, with value “www.hal.rcast.
u-tokyo.ac.jp”, and later receives the “e-mail” field, containing the inconsis-
tent value “nanya@hal.rcas.u-tokyo.ac.jp”. Based on the syntax of these data
types (web address and e-mail address), the words “rcast” and “rcas” can
be regarded as isolated terms with the same meaning, and the error may be
detected.

– Other Types: it is very hard to generalize the learning process to other
types of data, as this depends on their format, properties and meaning.
Relations involving other types of data must be located in an ad hoc manner.

Locating relations of the second type, where the sequence is relevant, is essen-
tially a temporal data mining [24] problem. That may include techniques based
on time series (for numeric values) or in a more general sense, discovery of fre-
quent episodes and rules [25]. Learning methods for sequences have some known
issues, especially the difficulty of locating complex relations involving several
fields, and the possibility of finding relations where they do not exist. These
issues must be carefully considered when these techniques are used for learning
implicit redundancies that will be employed for error detection.

Given the semantic nature of inconsistent values, detection of this type of error
carries some degree of uncertainty, and in some cases the learned redundancies
may not be enough to tell for sure if a value is inconsistent or not. Depending
on how it is defined, an inconsistent value detector may have different degrees
of confidence in its response: some values will be very far from the acceptable
(e.g. out of range) and can be easily considered inconsistent, but sometimes the
value is acceptable, but is suspicious. Thus, the output from some inconsistent
value detectors will not be binary (i.e. present or absent), but indicate a “level
of suspicion” for a given value. Sometimes, depending on the affected fields,
the adaptable unit may have to resort to further action, in order to determine
whether a suspect value is inconsistent or not. Furthermore, some errors occur-
ring during one task may remain undetected until later, when another task fails
because of the inconsistent data.

3.8 Action Errors

As said in section 2.2, this category includes errors that cannot be directly
observed in the messages the external unit sends or fails to send. That makes
this type of error very difficult, or even impossible, to detect. Action errors can
only be detected if the external exhibits specific patterns of behavior, such as
cycles or repetitions. Given their general nature, these errors must be addressed
in a case-by-case (ad hoc) manner — i.e. specialized solutions for known faults
which may occur.

Interaction Faults Caused by Third-Party External Systems 73

4 Conclusions and Future Work

In this paper, we have summarized the most important challenges faced when
designing a system able to detect errors caused by interaction faults. In the
considered scenario, interaction faults result from a flawed external system, de-
signed by a third party. Existing work aim at specific applications instead of a
general model, and at the design of more robust protocols — usually a better
solution in the technical sense, but not always feasible in practice. Furthermore,
the assumption that the external unit may be badly implemented is a real issue
often ignored in existing work.

We have defined the system and fault models for this scenario, and divided the
problem in several sub-problems — some of which can be addressed by simple or
traditional schemes, and some of which are complex problems themselves. Our
aim was not to present ad hoc solutions to specific sub-problems, but to introduce
a new scenario and give general approaches to each sub-problem. Though we
did not present detailed schemes for detecting all the possible types of errors, we
have proposed general mechanisms and showed when traditional schemes can be
employed. We have also discussed implicit redundancies — an important concept
that can be explored when tolerating interaction faults.

This paper lays down the foundations for a wide range of future work. The
complex sub-problems we have identified must be addressed individually. That
includes the inference of patterns/grammars to detect syntax errors in strings; a
methodology to assist a designer to locate implicit redundancies in the specifica-
tion of the standard; and specially automatic location of implicit redundancies,
through techniques such as statistical analysis of previous data, dictionaries and
data mining. Other future work include ways of exploring the notion of implicit
redundancies to correct errors, and the creation of a single architecture joining
all the schemes for error detection and correction.

Finally, it can be noted that the some of the identified sub-problems are very
general, and the same principles used to solve them may also be extended to
other types of problems sharing the same characteristics. For example, in several
instances, a human user may be seen as an external system — and schemes
employing implicit redundancies may be useful, for example, in the design of
dependable systems which interact with humans or detect intrusions.

References

1. Weiser, M.: The World is not a Desktop. Interactions 1(1), 7–8 (1994)
2. Digital Living Network Alliance: DLNA Home Page, www.dlna.org
3. Nassu, B.T., Nanya, T.: Tolerating Interaction Faults Originated From External

Systems. IEICE Technical Report 106(292), 7–12 (2006)
4. Avizienis, A., et al.: Basic Concepts and Taxonomy of Dependable and Secure

Computing. IEEE Transactions on Dependable and Secure Computing 1(1), 11–33
(2004)

www.dlna.org

74 B.T. Nassu and T. Nanya

5. Jarboui, T., Arlat, J., Crouzet, Y., Kanoun, K., Marteau, T.: Analysis of the Ef-
fects of Real and Injected Software Faults: Linux as a Case Study. In: PRCD 2002:
Proceedings of the 2002 Pacific Rim International Symposium on Dependable Com-
puting, Tsukuba, Japan, pp. 51–58 (2002)

6. Duraes, J.A., Madeira, H.S.: Emulation of Software Faults: A Field Data Study and
a Practical Approach. IEEE Transactions on Software Engineering 32(11), 849–867
(2006)

7. Duraes, J.A., Madeira, H.S.: TCPDUMP Public Repository,
http://www.tcpdump.org

8. Contributing Members of the UPnP Forum: UPnP Device Architecture 1.0 (2003)
9. Contributing Members of the UPnP Forum: InternetGatewayDevice:1 Device Tem-

plate Version 1.01 (2001)
10. Lai, R.: A Survey of Communication Protocol Testing. Journal of Systems and

Software 62(1), 21–46 (2002)
11. Dowd, M., McDonald, J., Schuh, J.: The Art of Software Security Assessment:

Identifying and Preventing Software Vulnerabilities. Addison-Wesley Professional,
Reading (2006)

12. Siewiorek, D.P., Swarz, R.S.: Reliable Computer Systems — Design and Evalua-
tion, 3rd edn. AK Peters, Ltd. (1998)

13. Postel, J. (ed.): Transmission control protocol (1981) DARPA Internet Program.
Transmission Control Protocol. In: RFC 793 (1981)

14. Kostas, T.J., Borella, M.S., Sidhu, I., Schuster, G.M., Grabiec, J., Mahler, J.: Real-
Time Voice Over Packet-Switched Networks. IEEE Network 12(1), 18–27 (1998)

15. Grangetto, M., Cosman, P.: MAP Decoding of Arithmetic Codes With a Forbid-
den Symbol. In: ACIVS 2002: Advanced Concepts for Intelligent Vision Systems,
Belgium (2002)

16. Gong, L.: A Note on Redundancy in Encrypted Messages. ACM SIGCOMM Com-
puter Communication Review 20(5), 18–22 (1990)

17. Contributing Members of the UPnP Forum: UPnP AV Architecture: 0.83 (2002)
18. Sipser, M.: Introduction to the Theory of Computation, 2nd edn. Course Technol-

ogy (2005)
19. Gold, E.M.: Language Identification in the Limit. Information and Control 10(5),

447–474 (1967)
20. Haussler, D.: Probably Approximately Correct Learning. In: National Conference

on Artificial Intelligence, pp. 1101–1108 (1990)
21. Case, J., Jain, S., Reischuk, R., Stephan, F., Zeugmann, T.: A Polynomial Time

Learner for a Subclass of Regular Patterns. Electronic Colloquium on Computa-
tional Complexity (ECCC) (38) (2004)

22. Chan, S.C., Wong, A.K.C.: Synthesis and Recognition of Sequences. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 13(12), 1245–1255 (1991)

23. Martins, B., Silva, M.J.: Spelling Correction for Search Engine Queries. In: EsTAL:
Advances in Natural Language Processing, Springer, Spain (2004)

24. Antunes, C.M., Oliveira, A.L.: Temporal Data Mining: An Overview. In: Workshop
on Temporal Data Mining, Conference on Knowledge Discovery and Data Mining
(KDD 2001), USA, pp. 1–13 (2001)

25. Mannila, H., Toivonen, H., Verkamo, A.I.: Discovery of Frequent Episodes in Event
Sequences. Data Mining and Knowledge Discovery 1(3), 259–289 (1997)

http://www.tcpdump.org

User-Perceived Software Service Availability

Modeling with Reliability Growth

Koichi Tokuno and Shigeru Yamada

Department of Social Systems Engineering,
Faculty of Engineering, Tottori University

4-101, Koyama, Tottori-shi, 680-8552 Japan
{toku,yamada}@sse.tottori-u.ac.jp

Abstract. Most of conventional software availability models often as-
sume only up and down state for the time-dependent behavior of a
software-intensive system. In this paper, we develop a plausible software
service availability model considering the degradation of system service
performance and the software reliability growth process in operation.
We assume that the software system has two operational states from
the viewpoint of the end user: one is providing with service performance
according to specification and the other is with degraded service perfor-
mance. The time-dependent behavior of the system alternating between
up and down state is described by a Markov process. This model can
derive instantaneous software service availability defined as the expected
value of possible service processing quantity per unit time at a specified
time point. Finally, we show several numerical examples of the measures
to analyze the relationship between the service availability evaluation
and software reliability growth characteristic.

Keywords: software service availability, service capacity, Markov pro-
cess, software reliability growth.

1 Introduction

It has been established that the outages of computing systems are caused due to
software faults in most cases [1]. Furthermore, it has been increasingly important
to evaluate not only the inherent quality characteristics of the computing sys-
tems but also the quality of service created by the use of the systems. Recently,
service reliability theory or service reliability engineering have a growing
attention; these consider the situations, behaviors, and satisfaction of the users
receiving services by the operation of systems as well and are more comprehen-
sive frameworks than the conventional reliability engineering. Tortorella [2,3]
has described the basic concepts and the methods of the service reliability en-
gineering; this aims to establish quantitative evaluation methods for the quality
of service created by the use of the artificial industrial products as well as the
inherent quality of the products. Considering the software systems are just the
industrial products to provide the services for the users, especially in computer

T. Nanya et al. (Eds.): ISAS 2008, LNCS 5017, pp. 75–89, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

76 K. Tokuno and S. Yamada

network systems, it is meaningful to discuss the performance evaluation methods
for software systems oriented to the service reliability engineering.

The studies on performance evaluation methods for computing systems have
much been discussed from the viewpoint of the hardware configuration. For ex-
ample, Beaudry [4] has proposed the performance-related measures such as the
computation reliability, the mean computation between failures, the computation
thresholds, the computation availability, and the capacity threshold and demon-
strated the analytical solutions of these measures for typical gracefully degrading
computing systems. Meyer [5] has introduced the concept of performability tak-
ing account of accomplishment levels from customer’s viewpoint. Nakamura and
Osaki [6] have discussed the performance evaluation for a multi-processor sys-
tem considering the demand of jobs. They have applied the Markov renewal
process and the queueing theory to the exact and approximate analyses of sev-
eral performance-related reliability measures. Sols [7] has introduced the concept
of degraded availability. These studies have considered that computing systems
have several different performance or service levels.

Recently, on the other hand, software-conscious approaches to performance/
reliability evaluation of computing systems have increased. In particular, stud-
ies on the optimal schedule of software preventive maintenance, referred to as
software rejuvenation, have much been conducted. Pfening et al. [8] and Garg et
al. [9] have considered the situation where the system performance (i.e., service
rate) gradually degrades with time due to the software aging, referred to as a
soft failure, and discussed the determination problem of the optimal software
rejuvenation time. Eto and Dohi [10] have treated the multiple degradation lev-
els of the software system which consists of one operating system and multiple
applications and derived the optimal preventive rejuvenation schedule maximiz-
ing the steady-state service availability. There exist another approaches aiming
at the software fault-tolerant architecture. Kimura et al. [11,12] have regarded
the N-version programming software system [13] and the recovery block software
system [14] as responsive systems [15], which combine the fault-tolerant architec-
ture and real-time requirement, and derived the reliability-related performance
measures such as responsiveness defined as the probability that the system out-
puts a correct result within a stipulated response time, and the mean response
time. Furthermore, for a fault-tolerant software system with two-version redun-
dant structure, Rinsaka and Dohi [16] have modeled the stochastic behavior of
the system with rejuvenation and analyzed the steady-state system availability
and the mean time to failure; the framework of this analysis has followed the
study of Huang et al. [17].

The above software-conscious approaches are discussed on the basis of perfor-
mance measures in steady states and assume that the probabilistic or stochastic
characteristics in system failure or restoration do not alter even though the sys-
tem is restored or refreshed, i.e., the system returns to the initial state, neither
better nor worse states. As to this point, the analytical framework in the above
studies is basically similar to that from the aspect of the hardware configuration
even though these studies are software-oriented. Traditional stochastic software

User-Perceived Software Service Availability Modeling 77

reliability modeling often considers the dynamic reliability/performance growth
process; Musa [18] says that this is one of main differences from the modeling
for the hardware system. As the studies considering the dynamic characteristics
peculiar to software systems mentioned above, Tokuno and Yamada [19] have
developed the stochastic model for performance evaluation of the multi-task
processing software system, considering the dynamic software reliability growth
process and the upward tendency of difficulty in debugging. They have applied
the infinite server queueing theory [20] to the description of the stochastic behav-
ior of the cumulative number of tasks whose processes are complete successfully
and derived several quantitative performance measures. Subsequently to [19],
Tokuno et al. [21] have considered the real-time property defined as the attribute
that the system can complete the task within the stipulated deadline [22] and
analyzed the more generalized case where the task arrival process follows a non-
homogeneous Poisson process. The performance measures have been given as
the functions of time and the number of debugging activities.

In this paper, we develop a stochastic software service availability model
considering the dynamic software reliability growth by extending the model
of Tokuno and Yamada [23]. Most of traditional software availability mod-
els [24,25,26] often assume only up and down states and provide the probabilistic
measures such as the instantaneous availability defined as the probability that
the system is operating at a given time point; this value does not reflect the
operational service levels. Recently, it is often that the traditional measures,
however, are not appropriate from the viewpoint of end users. As mentioned
in [8,9], software-intensive systems could not always display their peak perfor-
mance or service, or some internal parts of systems might be unfavorable states
even though they are available or do not seem to fall into operation stoppage out-
wardly in actual operational environment. For instance, the system is capable of
decreasing throughput due to not only software aging but also the concentration
of loads into some specified system resources. In the web-based service system,
end users may often perceive the performance degradation due to congestion of
the network. As another case, some parts of system functions are unavailable
due to maintenance of the corresponding software subcomponents [10]. We as-
sume that there are two user-perceived operational states: one is providing with
service performance according to specification, i.e., a desirable operational state,
and the other is with degraded service performance. The time-dependent behav-
ior of the software system alternating between up and down states is described
by a Markov process. In this model, several analytical solutions of system perfor-
mance measures are derived. In particular, we propose instantaneous software
service availability defined as the expected value of possible service processing
quantity per unit time at a specified time point. This measure takes account of
reliability and service performance simultaneously and is given as the function
of time and the number of debuggings.

The organization of the rest of this paper is as follow. Section 2 states the model
description and the notion of service processing. Section 3 shows the derivation of
software service availability measures. Section 4 analyzes the relationship between

78 K. Tokuno and S. Yamada

the service availability evaluation and the inherent software failure/restoration
characteristics by illustrating several numerical examples of measures derived in
the paper. Finally, Section 5 summarizes the results obtained in the paper and the
future works.

2 Model Description

Based on [23], the following assumptions are made for extension to service-
oriented software availability modeling:

A1. When the software system is operating, the time-interval of operation with
service performance according to specification, Tss, and the holding time of
service performance degradation, Tsd, follow the exponential distributions
with means 1/θ and 1/η, respectively.

A2. The software system breaks down and starts to be restored as soon as a
software failure occurs, and the system cannot operate until the restoration
action completes.

A3. The restoration action includes the debugging activity and software relia-
bility growth occurs if a debugging activity is perfect.

A4. Consider the imperfect debugging environment where the debugging activity
may fail, i.e., it is probabilistic whether the debugging activity succeeds or
fails. The debugging activity is perfect with perfect debugging probability a
(0 < a < 1), while imperfect with probability b(= 1−a). A perfect debugging
activity corrects and removes one fault from the system.

A5. When n faults have been corrected, the next software failure-occurrence
time-interval and the restoration time follow the exponential distributions
with means 1/λn and 1/μn, respectively.

We define the service capacity as system’s possible service processing quan-
tity per unit time; this term is referred by Pfening et al. [8] and the basic notion
of service capacity is similar to that of the computation capacity defined by
Beaudry [4]. For example, instructions/second or packets/second are adequate
as the units of the service capacity for the web-based systems. It is also assumed
that the service capacities of the system are C(> 0) and Cδ (0 < δ < 1) when
the system is operating with service performance according to specification and
degraded service performance, respectively. We call δ the decreasing ratio of the
service capacity. Furthermore, we refer to the treatment of the probabilistic char-
acteristics of Tss and Tsd in this paper. As mentioned in the previous section,
there exist various causes of service performance degradation, for example, not
only the internal factors such as software aging or temporal suspension of some
services due to restoration but also the external factors such as the congestion of
the network or the concentration of the access to some system resources. From
the viewpoint of end users, the phenomenon of the service performance degrada-
tion is one of interesting issues, but users hardly care about the causes of service
performance degradation. Since we pay attention to the user-perceived model-
ing, it is assumed that both of the occurrence of service performance degradation
and the retrieval from the performance degradation arise randomly.

User-Perceived Software Service Availability Modeling 79

We introduce a stochastic process {X(t), t ≥ 0} representing the user-perceived
state of the software system at the time point t. The state space of the process
{X(t), t ≥ 0} is defined as follows:

W = {Wn : n = 0, 1, 2, . . .}: the system is operating with service performance
according to specification (desirable operational state),

L = {Ln : n = 0, 1, 2, . . .}: the system is operating with degraded service perfor-
mance,

R = {Rn : n = 0, 1, 2, . . .}: the system is utterly inoperable and restored,

where n = 0, 1, 2, . . . denotes the cumulative number of corrected faults.
Figure 1 illustrates the sample state transition diagram of X(t). Let QA,B(τ)
(A, B ∈ {W , L, R}) denote the one-step transition probability that after
making a transition into state A, the process {X(t), t ≥ 0} makes a transition
into state B by time τ . The expressions for QA,B(τ)’s are given as follows:

QWn,Ln(τ) =
θ

λn + θ
[1 − e−(λn+θ)τ], (1)

QWn,Rn(τ) =
λn

λn + θ
[1 − e−(λn+θ)τ], (2)

QLn,Wn(τ) =
η

λn + η
[1 − e−(λn+η)τ], (3)

QLn,Rn(τ) =
λn

λn + η
[1 − e−(λn+η)τ], (4)

QRn,Wn+1(τ) = a(1 − e−μnτ), (5)
QRn,Wn(τ) = b(1 − e−μnτ). (6)

λ1Δτλ0Δτ

W
0

W
1

W
n

λn+1Δτ

θΔτ

ηΔτ

θΔτ

ηΔτ

θΔτ

ηΔτ

θΔτ

ηΔτ

R
0

R
1 R

n+1
R

nL
0

λnΔτ

aμ1Δτaμ0Δτ aμn+1ΔτaμnΔτ

bμ1Δτbμ0Δτ bμn+1ΔτbμnΔτ

λ0Δτ
L

1 λ1Δτ
L

n λnΔτ
L

n+1λn+1Δτ

W
n+1

Fig. 1. Sample state transition diagram of X(t)

3 Model Analysis

3.1 Distribution of Transition Time of X(t) between State W

We first consider the random variable Si,n representing the transition time of
X(t) from state Wi to state Wn (i ≤ n) and Let Gi,n(t) be the distribution
function of Si,n. Then the renewal equation of Gi,n(t) is obtained as

80 K. Tokuno and S. Yamada

Gi,n(t) = HWi,Ri ∗ QRi,Wi+1 ∗ Gi+1,n(t) + HWi,Ri ∗ QRi,Wi ∗ Gi,n(t)
HWi,Ri(t) = QWi,Ri(t) + QWi,Li ∗ QLi,Ri(t)

+ QWi,Li ∗ QLi,Wi ∗ HWi,Ri(t)
(i, n = 0, 1, 2, . . . ; i ≤ n)

⎫
⎪⎪⎬

⎪⎪⎭
,

(7)

where ∗ denotes the Stieltjes convolution and HWi,Ri(t) represents the proba-
bility that the process X(t) makes a transition from state Wi to state Ri in an
amount of time less than or equal to t. We apply the Laplace-Stieltjes (L-S)
transforms [27] to solve Eq. (7) and the L-S transform of Gi,n(t) is given by

G̃i,n(s) =
n−1∏

m=i

d1
md2

m

(s + d1
m)(s + d2

m)

=
n−1∑

m=i

(
A1

i,n(m)d1
m

s + d1
m

+
A2

i,n(m)d2
m

s + d2
m

)

. (8)

By inverting Eq. (8), we have the distribution function of Si,n, Gi,n(t) as

Gi,n(t) ≡Pr{Si,n ≤ t} = 1 −
n−1∑

m=i

[
A1

i,n(m)e−d1
mt + A2

i,n(m)e−d2
mt

]

(i, n = 0, 1, 2, . . . ; i ≤ n)⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

d1
i

d2
i

}

=
1
2

[
(λi + μi) ±

√
(λi + μi)2 − 4aλiμi

]

(double signs in same order)

A1
i,n(m)=

n−1∏

j=i

d1
jd

2
j

d1
m

n−1∏

j=i
j �=m

(d1
j − d1

m)
n−1∏

j=i

(d2
j − d1

m)

(m = i, i + 1, . . . , n − 1)

A2
i,n(m)=

n−1∏

j=i

d1
jd

2
j

d2
m

n−1∏

j=i
j �=m

(d2
j − d2

m)
n−1∏

j=i

(d1
j − d2

m)

(m = i, i + 1, . . . , n − 1)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,(9)

where A1
i,n(m) and A2

i,n(m) hold the following relation:

n−1∑

m=i

[
A1

i,n(m) + A2
i,n(m)

]
= 1. (10)

3.2 State Occupancy Probability

Let PA,B(t) be the state occupancy probabilities, that is,

PA,B(t) ≡ Pr{X(t) = B|X(0) = A} (A, B ∈ {W , L, R}). (11)

User-Perceived Software Service Availability Modeling 81

We have the following renewal equation of PWi,Wn(t):

PWi,Wn(t)= Gi,n ∗ PWn,Wn(t)
PWn,Wn(t)= e−(θ+λn)t + QWn,Rn ∗ QRn,Wn ∗ PWn,Wn(t)

+ QWn,Ln ∗ QLn,Wn ∗ PWn,Wn(t)
+ QWn,Ln ∗ QLn,Rn ∗ QRn,Wn ∗ PWn,Wn(t)

⎫
⎪⎪⎬

⎪⎪⎭
. (12)

The L-S transform of PWi,Wn(t) is obtained as

P̃Wi,Wn(s) =
s(s + λn + η)(s + μn)

(s + λn + θ + η)(s + d1
n)(s + d2

n)
·

n−1∏

m=i

d1
md2

m

(s + d1
m)(s + d2

m)

= s ·
[

B0
i,n

s + λn + θ + η
+

n∑

m=i

(
B1

i,n(m)
s + d1

m

+
B2

i,n(m)
s + d2

m

)]

. (13)

By inverting Eq. (13), we have PWi,Wn(t) as

PWi,Wn(t) ≡Pr{X(t) = Wn|X(0) = Wi}

=B0
i,ne−(λn+θ+η)t +

n∑

m=i

[
B1

i,n(m)e−d1
mt + B2

i,n(m)e−d2
mt

]

(i, n = 0, 1, 2, . . . ; i ≤ n)⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

B0
i,n =

−θ(μn − λn − θ − η)
n−1∏

j=i

d1
jd

2
j

n∏

j=i

(d1
j − λn − θ − η)(d2

j − λn − θ − η)

(i, n = 0, 1, 2, . . . ; i ≤ n)

B1
i,n(m) =

(λn + η − d1
m)(μn − d1

m)
n−1∏

j=i

d1
jd

2
j

(λn + θ + η − d1
m)

n∏

j=i
j �=m

(d1
j − d1

m)
n∏

j=i

(d2
j − d1

m)

(m = i, i + 1, . . . , n)

B2
i,n(m) =

(λn + η − d2
m)(μn − d2

m)
n−1∏

j=i

d1
jd

2
j

(λn + θ + η − d2
m)

n∏

j=i
j �=m

(d2
j − d2

m)
n∏

j=i

(d1
j − d2

m)

(m = i, i + 1, . . . , n)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎫
⎪⎪⎬

⎪⎪⎭

, (14)

where B0
i,n, B1

i,n(m), and B2
i,n(m) hold the following relations:

B0
i,i + B1

i,i(i) + B2
i,i(i) = 1 (i = n)

B0
i,n +

n∑

m=i

[
B1

i,n(m) + B2
i,n(m)

]
= 0 (i < n)

⎫
⎪⎬

⎪⎭
. (15)

82 K. Tokuno and S. Yamada

Similarly, we have the following renewal equation of PWi,Rn(t):

PWi,Rn(t)=Gi,n ∗ HWn,Rn ∗ PRn,Rn(t)
PRn,Rn(t)= e−μnt + QRn,Wn ∗ HWn,Rn ∗ PRn,Rn(t)

}

, (16)

where HWn,Rn(t) has appeared in Eq. (7). The L-S transform of PWi,Rn(t) is
obtained as

P̃Wi,Rn(s) =
s

aμn
· aλnμn

(s + d1
n)(s + d2

n)
· G̃i,n(s)

=
s

aμn
G̃i,n+1(s), (17)

where d1
nd2

n = aλnμn from Eq. (9). By inverting Eq. (17), we obtain PWi,Rn(t)
as

PWi,Rn(t) ≡ Pr{X(t) = Rn|X(0) = Wi}

=
gi,n+1(t)

aμn
(i, n = 0, 1, 2, . . . ; i ≤ n), (18)

where gi,n(t) ≡ dGi,n(t)/dt is the density function of Si,n. We note that PWi,Rn(t)
has no bearing on the parameters θ and η.

Let {Y (t), t ≥ 0} be the counting process representing the cumulative number
of faults corrected at the time point t. Then we have the following relationship:

{Y (t) = n|X(0) = Wi} ⇐⇒
{X(t) = Wn|X(0) = Wi} ∪ {X(t) = Rn|X(0) = Wi} ∪ {X(t) = Un|X(0) = Wi}

(i ≤ n). (19)

Furthermore, the probability mass function of {Y (t), t ≥ 0} is given by

Pr{Y (t) = n|X(0) = Wi} = Gi,n(t) − Gi,n+1(t). (20)

Accordingly, PWi,Ln(t) is given by

PWi,Ln(t) ≡ Pr{X(t) = Ln|X(0) = Wi}
= Gi,n(t) − Gi,n+1(t) − PWi,Wn(t) − PWi,Rn(t)

(i, n = 0, 1, 2, . . . ; i ≤ n), (21)

since the events {X(t) = Wn|X(0) = Wi}, {X(t) = Rn|X(0) = Wi}, and
{X(t) = Ln|X(0) = Wi} are mutually exclusive.

3.3 Software Service Availability Measures

Hereafter, we set the time point where the i-th fault-removal is complete at the
time origin t = 0.

User-Perceived Software Service Availability Modeling 83

The instantaneous software availability is defined as

A(i)(t) ≡
∞∑

n=i

[PWi,Wn(t) + PWi,Ln(t)]

= 1 −
∞∑

n=i

PWi,Rn(t), (22)

which represents the probability that the software system is operable at the time
point t. This value does not consider the service performance level.

Here we consider the stochastic process {Z(t), t ≥ 0} representing the service
level of the system (i.e., service performance capacity) at the time point t; this
possible values are C, Cδ, and 0. We define the instantaneous software service
availability as the expected value of service performance capacity at the time
point t and this measure is given by

As(i)(t) ≡ E[Z(t)|X(0) = Wi]
= C · Pr{X(t) ∈ W |X(0) = Wi} + Cδ · Pr{X(t) ∈ L|X(0) = Wi}

+ 0 · Pr{X(t) ∈ R|X(0) = Wi}

= C

∞∑

n=i

[PWi,Wn(t) + δPWi,Ln(t)] . (23)

The notion of the instantaneous software service availability is based on that of
the computation availability proposed by Beaudry [4].

We should note that the cumulative number of faults corrected at the time
origin, i.e., integer i cannot be observed immediately since this model assumes
the imperfect debugging environment. However, we can easily observe the num-
ber of debugging activities and the cumulative number of faults corrected after
the completion of the l-th debugging, Nl, is distributed with the probability
mass function Pr{Nl = i} =

(
l
i

)
aibl−i. Therefore, we can convert Eqs. (22) and

(23) into the functions of the number of debuggings, l, as

A(t; l) =
l∑

i=0

(
l

i

)

aibl−iA(i)(t) (l = 0, 1, 2, . . .), (24)

As(t; l) =
l∑

i=0

(
l

i

)

aibl−iAs(i)(t) (l = 0, 1, 2, . . .), (25)

respectively. Equations (24) and (25) represent the instantaneous software avail-
ability and the instantaneous software service availability, given that the l-th
debugging was complete at time point t = 0, respectively. We note that Eq. (24)
is identical with one derived in [23].

4 Numerical Examples

Using the model discussed above, we present several numerical illustrations of
software service availability assessment, where we apply λn ≡ Dcn (D > 0, 0 <

84 K. Tokuno and S. Yamada

0 100 200 300 400 500
0.78

0.8

0.82

0.84

0.86
As(t;l)

Time

l=16
l=12
l=8
l=4
l=0

Fig. 2. As(t; l) for various number of debuggings, l (θ = 5.0, η = 48.0, C = 1.0, δ =
0.5)

c < 1) and μn ≡ Ern (E > 0, 0 < r ≤ 1) to the hazard and the restoration
rates, respectively [28].

We cite the estimates of the parameters associated with λn and μn from
Ref. [19], i.e., we use the following values:

D̂ = 0.246, ĉ = 0.940, Ê = 1.114, r̂ = 0.960,

where we set a = 0.8. These values have been estimated based on the simulated
data set generated from data cited by Goel and Okumoto [29]; this consists of 26
software failure-occurrence time-interval data and the unit of time is day. The
detail of parameter estimation of λn and μn is described in [19].

Figure 2 shows the instantaneous software service availability, As(t; l), in
Eq. (25) for various number of debuggings, l, in the case where the system
service degradation occurs five times a day on average (θ = 5.0) and the mean
service degradation time is 30 minutes (E[Tsd] = 1/η = 1/48.0) and the degraded
service performance level is half of desirable level, i.e., C = 1.0 and δ = 0.5. This
figure displays that software service availability improves as the debugging pro-
cess progresses (i.e., the inherent software reliability growth occurs).

Hereafter, we show evaluation examples after the completion of the 26th
debugging activity.

Without software failure-occurrence, we might consider only two states; op-
erational states with desirable service performance, denoted as state W , and with

User-Perceived Software Service Availability Modeling 85

0 100 200 300 400 500
0.83

0.84

0.85

0.86

0.87
As(t;l)

Time

k=0.5, 1.0, 2.0, 3.0

Fig. 3. As(t; l) for various values of θ and η, given θ/η = 5/48 (l = 26; C = 1.0, δ =
0.5)

degraded service performance, denoted as state L. Then the state occupancy
probabilities are given by

PW,W (t) ≡ Pr{X(t) = W |X(0) = W}

=
η

θ + η
+

θ

θ + η
e−(θ+η)t

=
1

ν + 1
+

ν

ν + 1
e−η(ν+1)t, (26)

PW,L(t) ≡ Pr{X(t) = L|X(0) = W}

=
θ

θ + η

[
1 − e−(θ+η)t

]

=
ν

ν + 1

[
1 − e−η(ν+1)t

]
, (27)

respectively, where we denote ν ≡ θ/η, and the limiting software service avail-
ability is obtained as

As ≡ lim
t→∞ C[PW,W (t) + δPW,L(t)]

=
C(1 + δν)

ν + 1
. (28)

Equations (26), (27), and (28) imply that the limiting software service availability
depends on the ratio of θ and η, rather than individual values of θ and η, and that
the larger values of both of θ and η with their ratio constant, in other words,

86 K. Tokuno and S. Yamada

0 100 200 300 400 500
0.82

0.83

0.84

0.85

0.86

0.87

As(t;l)

Time

a=0.8
a=0.7
a=0.6

a=1.0
a=0.9

Fig. 4. As(t; l) for various values of perfect debugging probability, a (l = 26; θ =
5.0, η = 48.0, C = 1.0, δ = 0.5)

0 100 200 300 400 500
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95
As(t;l)

Time

r=0.98 (r>c)

r=0.96 (r>c)

r=0.92 (r<c)

r=0.94 (r=c)

Fig. 5. As(t; l) for various values of decreasing ratio of restoration rate, r (l = 26; θ =
5.0, η = 48.0, C = 1.0, δ = 0.5)

the situation where the cycle between state W and state L becomes shorter
converge the software service availability to As faster. However, the evaluation
considering software failure-occurrence in this paper is different from the above

User-Perceived Software Service Availability Modeling 87

mention. Figure 3 shows the dependence of As(t; l) on the values of k, given θ/η
is constant, where we set θ0 = 5.0 and η0 = 48.0, then θ = kθ0 and η = kη0.
In the case without software failure-occurrence, we can see that the larger value
of k converges to As faster from the form of Eqs. (26) and (27). On the other
hand, Fig. 3 displays that the behavior of As(t; l) is almost same in any case of
k; this tells us that the the software service availability almost depends on only
the value of θ/η, not individual values of θ and η.

Figure 4 shows the dependence of As(t; l) on the values of perfect debugging
probability, a. This figure indicates that the higher debugging ability contributes
to faster improvement of software service availability.

Figure 5 shows the dependence of As(t; l) on the value of r, representing the
decreasing ratio of the restoration rate, μn. According to [23], the behavior of the
maintenance factor, ρn ≡ λn/μn (n = 0, 1, 2, . . .), decides whether the instanta-
neous software availability given by Eq. (24) or the average software availability
improve or degrade with time, i.e., the traditional software availability improves
(degrades) if ρn is a decreasing (increasing) function of the cumulative number
of corrected faults, n. From Fig. 5, we can see that ρn has a similar impact on
software service performance evaluation. In the case of r = c, the traditional
software availability converges to 1/(ρ0 +1) = 1/[(D/E)+1], while the software
service availability converges to

As0 =
As

ρ0 + 1
, (29)

which is different value from As in Eq. (28).

5 Concluding Remarks

In this paper, we have discussed the service-oriented software availability mod-
eling with two different operational levels; one is the desirable operational state
providing with service performance according to specification and the other is
providing with degraded service performance. This model has considered the
software reliability growth process and the upward tendency of difficulty in de-
bugging. The time-dependent behavior of the system has been described by a
Markov process. Several closed form expressions of stochastic quantities for soft-
ware service availability measurement have been derived from our model. In
particular, we have proposed the new measure referred to as the instantaneous
software service availability which is defined as the expected value of service
processing quantity per unit time; this is given as the function of time and the
number of debugging activities. Numerical examples of the proposed measure
have also been illustrated to investigate the relationship between the inherent
software reliability growth characteristics and the system service performance
evaluation. Most of previous works such as [8], [9], [10], [11], [12], and [16] have
conducted the performance evaluation of the software system only in steady
states; this means that they have not considered the reliability growth process
although there is originally a possibility of dynamic quality/reliability growth of

88 K. Tokuno and S. Yamada

software systems. This paper has overcome the above issue by extending the ex-
isting software availability model and enables us to evaluate the service-oriented
availability as well; this knowledge is very meaningful.

Expansion to the model considering the multiple level of service performance
degradation remains as one of future studies. Furthermore, one of interesting
issues is to consider the service availability assessment which is conscious of the
mission time interval of the users [30,31,32].

Acknowledgments

This work was supported in part by Grants-in-Aid for Scientific Research (C)
of the Ministry of Education, Culture, Sports, Science and Technology of Japan
under Grant No. 18510124.

References

1. Gray, J., Siewiorek, D.P.: High-availability computer system. Computer 24, 39–48
(1991)

2. Tortorella, M.: Service reliability theory and engineering, I: Foundations. Quality
Technology and Quantitative Management 2, 1–16 (2005)

3. Tortorella, M.: Service reliability theory and engineering, II: Models and examples.
Quality Technology and Quantitative Management 2, 17–37 (2005)

4. Beaudry, M.D.: Performance-related reliability measures for computing systems.
IEEE Transactions on Computers C-27, 540–547 (1978)

5. Meyer, J.F.: On evaluating the performability of degradable computing systems.
IEEE Transactions on Computers C-29, 720–731 (1980)

6. Nakamura, M., Osaki, S.: Performance/reliability evaluation of a multi-processor
system with computational demands. International Journal of Systems Sciences 15,
95–105 (1984)

7. Sols, A.: System degraded availability. Reliability Engineering & System Safety 56,
91–94 (1997)

8. Pfening, A., Garg, S., Puliafito, A., Telek, M., Trivedi, S.K.: Optimal software
rejuvenation for tolerating soft failures. Performance Evaluation, 27–28, 491–506
(1996)

9. Garg, S., Puliafito, A., Telek, M., Trivedi, S.K.: Analysis of preventive maintenance
in transactions based software systems. IEEE Transactions on Computers 47, 96–
107 (1998)

10. Eto, H., Dohi, T.: Analysis of a service degradation model with preventive re-
juvenation. In: Penkler, D., Reitenspiess, M., Tam, F. (eds.) ISAS 2006. LNCS,
vol. 4328, pp. 17–29. Springer, Heidelberg (2006)

11. Kimura, M., Yamada, S.: Performance evaluation modeling for redundant real-time
software systems (in Japanese). Transactions of IEICE J78-D-I, 708–715 (1995)

12. Kimura, M., Yamamoto, M., Yamada, S.: Performance evaluation modeling for
fault-tolerant software systems with processing time limit (in Japanese). Journal
of Reliability Engineering Association of Japan 20, 422–432 (1998)

13. Avižienis, A.: The N-version approach to fault-tolerant software. IEEE Transac-
tions on Software Engineering SE-11, 1491–1501 (1985)

User-Perceived Software Service Availability Modeling 89

14. Randell, B.: System structure for software fault-tolerance. IEEE Transactions on
Software Engineering SE-1, 220–232 (1975)

15. Malek, M.: A consensus-based model for responsive computing. IEICE Transactions
on Information and Systems E76-D, 1319–1324 (1993)

16. Rinsaka, K., Dohi, T.: Behavioral analysis of a fault-tolerant software system with
rejuvenation. IEICE Transactions on Information and Systems E88-D, 2681–2690
(2005)

17. Huang, Y., Kintala, C., Kolettis, N., Fulton, N.D.: Software rejuvenation: Analysis,
module and applications. In: Proceedings of the 25th International Symposium
on Fault Tolerant Computing, pp. 381–390. IEEE Computer Society Press, Los
Alamitos (1995)

18. Musa, J.D.: Software Reliability Engineering. McGraw-Hill, New York (1999)
19. Tokuno, K., Yamada, S.: Stochastic performance evaluation for multi-task process-

ing system with software availability model. Journal of Quality in Maintenance
Engineering 12, 412–424 (2006)

20. Ross, S.M.: Introduction to Probability Models, 9th edn. Academic Press, New
York (2007)

21. Tokuno, K., Fukuda, M., Yamada, S.: Stochastic performance evaluation for soft-
ware system considering NHPP task arrival. International Journal of Performability
Engineering 4, 57–70 (2008)

22. Muppala, J.K., Woolet, S.P., Trivedi, K.S.: Real-time-systems performance in the
presence of failures. Computer 24, 37–47 (1991)

23. Tokuno, K., Yamada, S.: Markovian software availability measurement based on
the number of restoration actions. IEICE Transactions on Fundamentals E83-A,
835–841 (2000)

24. Shooman, M.L., Trivedi, A.K.: A many-state Markov model for computer software
performance parameters. IEEE Transactions on Reliability R-25, 66–68 (1976)

25. Okumoto, K., Goel, A.L.: Availability and other performance measures for sys-
tem under imperfect maintenance. In: Proceedings of COMPSAC 1978, pp. 66–71
(1978)

26. Kim, J.H., Kim, Y.H., Park, C.J.: A modified Markov model for the estimation of
computer software performance. Operations Research Letters 1, 253–257 (1982)

27. Osaki, S.: Applied Stochastic System Modeling. Springer, Heidelberg (1992)
28. Moranda, P.B.: Event-altered rate models for general reliability analysis. IEEE

Transactions on Reliability R-28, 376–381 (1979)
29. Goel, A.L., Okumoto, K.: Time-dependent error-detection rate model for software

reliability and other performance measures. IEEE Transactions on Reliability R-28,
206–211 (1979)

30. Rubino, G., Sericola, B.: Interval availability analysis using operational periods.
Performance Evaluation 14, 257–272 (1992)

31. Platis, A.: A generalized formulation for performability indicator. Computers and
Mathematics with Applications 51, 239–246 (2006)

32. Carrasco, J.A.: Two methods for computing bounds for the distribution of cu-
mulative reward for large Markov models. Performance Evaluation 63, 1165–1195
(2006)

Execution Path Profiling for OS Device Drivers:

Viability and Methodology�

Constantin Sârbu1, Andréas Johansson2, and Neeraj Suri1

1 Department of Computer Science – Technische Universität Darmstadt,
Hochschulstr. 10, D–64289 Darmstadt, Germany

{cs,suri}@cs.tu-darmstadt.de
2 Department of Mechatronics and Software – Volvo Technology Corporation,

Sven Hultins gata 9C, SE–41288 Göteborg, Sweden
andreas.olof.johansson@volvo.com

Abstract. Operating Systems (OSs) mediate across the hardware and
software applications, leading to overall system service provision, but of-
ten sacrifice service robustness while favoring increasing feature richness
and peripheral support. The OS interface to peripherals is implemented
by components termed as Device Drivers (DDs). Unfortunately, despite
extensive testing, DDs continue to constitute the prominent cause of
system service failures.

To find DD’s weakness areas, this paper proposes a novel technique
for profiling kernel mode DDs execution paths. Such profiles highlight
the frequently used parts of a driver for a workload, helping identify re-
dundant tests. The communication interfaces between the OS and DDs
are simultaneously monitored, revealing the kernel functions invoked at
runtime and the followed code paths. To highlight execution hotspots, a
cluster analysis scheme using string similarity metrics is proposed to dis-
tribute the code paths into equivalence classes, reflecting the occurrence
weights of both kernel functions and code paths.

Keywords: Operating System, Device Driver, Code Path Profiling,
Cluster Analysis, Black-box Testing.

1 Introduction

COTS OSs are invariably required to balance the tradeoff between service de-
pendability and service performance. Often performance aspects are favored in
order to offer extensive support for a wide spectrum of applications and periph-
erals. The OS interface to peripherals, namely device drivers (DDs), are typically
produced by third-party developers, often lacking the necessary skill and knowl-
edge required to develop high quality and robust DDs. Moreover, under the
pressure to fulfill market demands, resources allocated to DD testing are often
limited. Thus, while OS kernels have reached a certain maturity, the DDs are
� This research has been supported, in part, by Microsoft Research, EU FP6 NoE

ReSIST and DFG TUD GK-MM.

T. Nanya et al. (Eds.): ISAS 2008, LNCS 5017, pp. 90–109, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Execution Path Profiling for OS Device Drivers: Viability and Methodology 91

prematurely released and therefore are more likely prone to failures, affecting
the overall provisioning of OS’ service robustness.

With hundreds of devices attached to each ordinary computing system (about
250 in a Windows XP or Vista installation [1]) the drivers’ code represents a
significant share of the total OS code. In Linux, for instance, about 70% of the
total lines of code belongs to DDs [2]. Given the immaturity of their code, this
trend suggests that driver code is responsible for many OS service outages. This
observation is confirmed by the OS reliability research community’s results from
several independent [3], academic [4, 5, 6, 2, 7] and industry [8] sources.

As DDs coexist in privileged space with critical OS kernel structures, an error
in a defective DD can propagate to the kernel, eventually leading to degraded
OS service level or even generalized system failure. Recent studies [9, 10] have
shown that OS kernels are permeable to error propagation, mostly due to the
fact that in kernel space various components communicate under a “gentleman’s
agreement”. This means that, for the sake of performance, kernel components
perform only minimal (if any!) parameter validation, assuming that their com-
munication parties are error-free and non-malicious. DDs should also follow this
policy, hence passing the responsibility of producing error-free code to driver
developers. This means that, beside programming experience, driver developers
have to possess a deep understanding of OS kernel intricacies and be fully aware
of the DD’s runtime context.

It is reasonable that system integrators themselves test the DDs installed
in their systems to verify that the specified level of service and reliability is
provided. Typically, black-box testing is the only viable approach. Therefore,
working continually under deadline pressure, system integrators limit DD testing
to simpler acceptance and integration tests.

Execution profiling information is an important prerequisite for helping rigor-
ous DD validation. It is an abstract model describing how a DD behaves under
the influence of external stimuli. As such it can help DD testers identify which
part of the DD code is most exercised for a representative workload. This can
be used to guide selection of test cases, by focusing on the most frequently used
parts in an operational setting, which may substantially differ from statically
selected test cases.

Regardless, the ability to identify DD execution profiles increasingly repre-
sents a serious technical challenge as: (a) the access to the OS kernel space is
limited (debugging is non-trivial); (b) the access to source code is limited (usu-
ally, testers cannot access the source code of the tested object); and (c) envision-
ing the runtime environment for COTS DDs is difficult (virtually each individual
computing system has its own unique set of HW and SW components).

1.1 Paper Emphasis and Contributions

With the overall aim to enhance OS robustness, in this paper we develop a
profiling methodology for kernel-mode DD execution paths by considering an
additional communication interface alongside with the I/O requests considered
in our prior work [11, 12]. In this communication paradigm, at runtime, a DD

92 C. Sârbu, A. Johansson, and N. Suri

acts as a consumer of the services (i.e., functions) provided by various kernel
libraries. Therefore, a DD’s runtime activity can be defined by the sequences of
calls made to external functions. As DDs act on kernel calls, the call sequences
are delimited by the I/O requests generated by the OS, and thus infer the execu-
tion path taken in the DD’s code, helping to evaluate and to compare the effects
of different workloads (i.e., test suites or individual test cases) by revealing ex-
ecution hotspots. The presented process for caption and evaluation of the call
traces does not require source code access to any of the involved components.

The presented results show a key phenomenon, the tendency of call traces
to cluster with respect to the code being executed. We consequently present a
cluster analysis method to ascertain the relative similarity of the code paths
taken. The obtained trace clusters represent (together with their occurrence
indexes) effective representations of a DD’s execution hotspots. From a testing
perspective, this strongly indicates the possibility to significantly reduce the
testing effort needed to cover the exercised code paths by thoroughly testing
only a single representative code path from each equivalence class.

Additionally, we show how the number of equivalence classes can be decided
by varying the similarity threshold (the cutoff factor of the dendrogram - a
tree-like structure describing the clustering). This represents a powerful tool for
directing the efforts that a subsequent testing campaign needs undergo.

Overall, this paper outlines a methodology to obtain execution profiles for
kernel DDs, and ascertain its viability against a set of actual Windows DDs.
By using tracing information from two driver communication interfaces, our
technique provides insights that help understand a DD’s runtime behavior in
terms of execution paths. The main contributions of this paper are:

• A novel method to accurately profile a driver’s runtime behavior in terms
of the called kernel services.
• An occurrence-weighted list of kernel functions accessed by a driver indi-
cating possible error propagation paths among kernel libraries and drivers.
• A novel application of clustering algorithms to identify and tune equiva-
lence classes of test cases.
• A tendency of call traces to cluster is demonstrated in a real-world sce-
nario, outlining execution hotspots for an actual DD (the floppy disk driver).

1.2 Paper Organization

The paper is organized as follows. Section 2 introduces the related work, followed
in Sects. 3, 4 and 5 by the presentation of the terminology and main work concepts
used throughout the paper. After a discussion on clustering aspects in Sect. 6,
Sects. 7 and 8 present and then discuss the experimental validation of the method.
Finally, Sect. 9 concludes and briefly presents our ongoing research activities.

2 Related Work

Weyuker recommends to focus testing of general SW onto the functionalities
with high occurrence rates in the field [13, 14] in order to find faults with high

Execution Path Profiling for OS Device Drivers: Viability and Methodology 93

likelihood to perturb service provision early on. Intuitively, such an option is en-
abled only under the assumption that a runtime profile of the program targeted
by testing is available. Our methodology create such profiles for kernel DDs by
revealing the taken code paths and the set of driver-external functionalities re-
quired at runtime. Defect localization studies for general [15] and OS-specific
SW [6] support Weyuker’s recommendation by showing that defects tend to
cluster into certain areas of code. By profiling a DD’s activity, the work pre-
sented in this paper guides a rigorous partitioning of the code by indicating
runtime execution hotspots. Moreover, Weyuker warns about the necessity to
validate COTS components in their new environments, even though they suc-
cessfully passed their producers’s testing campaigns. As our methodology is com-
pletely disconnected from the need to access any OS part’s source code, it can
be used for black-box level DD profiling, thus easing the testing efforts of a DD’s
user.

Johansson et al. proposed in [16] a selection method for SWIFI injection trig-
gers which is based on call blocks of driver-external functions. The method-
ology presented in this paper for profile construction is similar in terms of
the used monitoring strategy, but in contrast we consider the effects of the
kernel’s I/O requests on the DD’s behavior. Mendonca and Neves [1] used a
SWIFI technique to evaluate the robustness of the kernel libraries. The tar-
get functions were selected statically, by inspecting the import tables of the
DDs (see 5.1) of several Windows installations and choosing the ones that are
used by most of the DDs. In accordance with Weyuker’s recommendations,
our results suggest that the target functions should be selected on a dynamic
basis (using profiling) by building occurrence indexes to guide the selection
process.

Ball and Larus [17] acknowledged the application of path profiling for test cov-
erage assessment, “by profiling a program and reporting unexecuted statements
or control flow”. They used binary instrumentation to obtain instruction traces
that reveal a program’s control-flow to identify paths and their execution fre-
quencies. The paths ended at loop and procedure boundaries. An extension is
represented by the “whole program paths” described in [18], which cross both
boundaries to reveal a better picture of a program’s execution pattern. Though,
these approaches are not directly applicable to DD as the they are implemented
as function libraries rather than programs in the classical sense. Moreover, in-
strumentation induces a high execution overhead and produces large amounts of
data, two characteristics which penalize the use of this approach inside the OS
kernel space.

Leon and Podgursky [19] used profiles generated by individual test cases and
a clustering technique for evaluating test suite minimization by selecting one test
case per cluster. The profiles used were generated by third-party tools, so the
cluster analysis had to rely on their accuracy. While test cost reduction is out of
the scope of this paper, we focus on building viable and accurate DD profiles,
as a prerequisite mean to reducing test efforts.

94 C. Sârbu, A. Johansson, and N. Suri

3 System Model: The Entailed OS Kernel Components

In this paper we consider a model of a computing system as depicted in Fig. 1.
It represents a computer equipped with Windows XP, the chosen OS for the case
studies presented in Sect. 7. Nevertheless, the system in Fig. 1 is general enough
to represent the architecture of most of contemporary COTS OSs. Here, the OS
defines the layer between the hardware and user-mode applications. It provides
to the applications an abstract view of the hardware peripherals and a set of
services for accessing and managing them. In Fig. 1, the entities relevant for the
approach are located inside the OS kernel space.

...Appl. 1

Driver 1

System Service Interface

Hardware layer

USER

KERNEL

HW

...

Driver 2

Driver 3 Driver n

Appl. mAppl. 2
System

Workload

SPACE

SPACE

SPACE

OS
I/O

Manager

OS
Kernel

Libraries

Fig. 1. A HW-SW system featuring a COTS OS with n DDs (Windows XP)

The System Service Interface provides a uniform service interface to the ap-
plications. That is, applications issue access requests to different services offered
by the OS and this abstraction layer translates them into specific calls to various
OS structures, hiding the diversity of the peripheral access interfaces from the
applications.

The device drivers (DDs) can be considered device-specialized toolboxes to
access each particular hardware peripheral. The DDs are loaded by the OS at
initialization time or on demand, when it needs to communicate with a certain
hardware device. In Windows XP, the structure of the DDs is specified by the
Windows Driver Model (WDM) [20]. WDM defines the format of the kernel
structures associated with DDs, the programming interface they need to follow
and the communication paradigm with the I/O Manager, described below. To
support the concepts described by the WDM, a Driver Developer Kit (DDK)
containing tools and documentation is available for DD development.

The I/O Manager is a combination of various OS kernel structures with role
in naming, registering and managing the DD objects. The I/O Manager is con-
cerned with preparing and sending commands to the DDs, for OS administrative
purposes or on behalf of the applications. Also, the I/O Manager prepares the
results of the I/O invocations of the peripherals (received from the corresponding
DDs) and forwards them to the calling applications. Section 4 contains a more
detailed discussion on DD’s interaction with the I/O Manager.

Execution Path Profiling for OS Device Drivers: Viability and Methodology 95

The OS Kernel Libraries are dynamic-linked libraries implementing general
functionality and mechanisms that ensure core OS service provision (i.e., pro-
cess and thread management, synchronization primitives, scheduling). In the
Windows-family OSs the kernel libraries are built as portable executables, fol-
lowing the PE/Coff standard [21]. The DDs and other kernel components use
the services offered by the kernel libraries by calling their exported functions.
Section 5 discusses in detail how DDs use the functionalities stored in kernel
libraries.

4 Developing the Basis for Code Tracing: The I/O
Request Packet (IRP) Interface

I/O Request Packets (IRP) are kernel structures built by the I/O Manager when
a request needs to be sent to a DD. The IRP structure contains the request type
and the parameters needed by the recipient DD to start executing the request-
associated activity. When a result of the operation is available, the DD uses the
same IRP structure to piggyback it back to the I/O Manager.

Currently, WDM specifies 28 types of IRP requests (for instance READ for
reading data from the device and CLEANUP for preparing the device for unload
etc.). A DD must implement dispatch functions for every IRP type it supports
and register its list of supported IRPs with the I/O Manager. This request type-
based code separation of WDM-compliand DDs is relevant for our approach, as
one can infer the functionality executed at any instant, based only on the type
of the issued IRP.

4.1 The Processing of I/O Requests

To illustrate how an I/O request is processed, consider a simple example of an
application that issues a read request to a hardware device. Figure 2 depicts this
procedure where the main stages are: (1) the application calls ReadFile function
of the WinAPI; (2) the WinAPI traps the OS kernel into the I/O Manager which
selects the DD managing the target HW device; (3) the I/O Manager encodes the
I/O request in an IRP structure and forwards it to the DD; (4) the DD contacts
the HW device, instructs it to retrieve the data and completes the IRP; (5) the
I/O Manager reads the completion information from the IRP and (6) returns
the result to the WinAPI, in terms of a pointer to data; (7) the WinAPI copies
the data to a buffer accessible to the calling application (in user space) and (8)
informs the application about the result of the operation and the location of the
requested data. In this paper, we capture the IRP flow between the I/O Manager
and a DD. At this communication interface, two relevant events are recorded:
incoming IRPs (from I/O Manager to DD, step (3)) and outgoing IRPs (from
DD to the I/O Manager, step (5)). Onwards, we call this communication level
the “IRP interface”.

According to the WDM specification, each HW device has at least two drivers
servicing it, the function driver and the bus driver. The function driver is han-
dling the receipt and completion of IRPs, whereas the bus driver is responsible

96 C. Sârbu, A. Johansson, and N. Suri

USER
SPACE

KERNEL
SPACE

HW
SPACE

Function driver

Filter driver

Bus driver

Application
(Workload)

I/O Manager

Win API Buffer

IRP

status Device Driver Stack

HW Device

1

2 6

8
7

3

5

4

Fig. 2. Processing of I/O requests

KERNEL
SPACE

Lib1.sys

“foo”

“bar”

Device
Driver

Lib2.dll
IAT2

IAT1
EAT

EAT
EAT

Fig. 3. A DD importing functions from
two libraries

for connecting the device with the host computer, being usually the driver lo-
cated closest to the HW peripheral. On top of the function driver, a driver stack
can contain one or several filter drivers, which act as wrappers for the underly-
ing drivers. Filter drivers are usually responsible for the preparation of the the
IRP structure or initialization of other kernel structures needed by the drivers
located below in the stack.

In order to capture the IRP flow we have built a filter driver and installed it
on the top of the driver stack. Its location enables it to be the first to receive
the incoming IRPs and the last to see the outgoing ones. Our filter driver logs
the incoming and outgoing IRPs and forwards them, unchanged, to their orig-
inal recipients while keeping the induced computational overhead to minimum.
As each incoming IRP triggers the execution of a dispatch function and each
outgoing IRP signals the termination of the associated computation, we use the
captured IRP flow logs to specify a DD’s activity at any certain instant. The
filter driver is written with portability in mind, so that it can be installed on
top of any WDM-compliant DD, without requiring modifications.

4.2 Mode, Transition and Operational Profile of a Device Driver

As we do not assume access to the DD’s source code, we consider that DD
state changes are caused by the I/O request flow having the DD as recipient. In
our previous work [11] we introduced an abstracted DD state definition called
mode that allows for expressing DD activity at runtime. The mode of a driver
is defined as follows:

Definition 1 (Driver Mode). The mode of a driver D is the tuple of binary
predicates, each assigned to one of the n distinct IRP types supported by the
driver:

MD : < PIRP1 PIRP2 PIRP3 .. PIRPn >, where PIRPi is

PIRPi =
{

1, if performing the functionality triggered by receival of IRPi

0, otherwise

Execution Path Profiling for OS Device Drivers: Viability and Methodology 97

A transition between modes is triggered by the receival of a new IRP or com-
pleting an executed IRP. As the I/O Manager serializes the IRP flow, our model
assumes that only one bit of the tuple describing the mode of the DD is flipped
at a time. Therefore, the DD can switch only to modes whose binary tuples are
within Hamming distance of 1 from the current mode. Because of this behavior,
the number of possible transitions in the model is n · 2n (each mode can be left
on n exit transitions).

We call the set of the modes (Nop) visited under a certain workload relevant
for the DD, together with the traversed transitions (Top) the operational profile
of the DD. In [11] we have demonstrated that irrespective of the chosen workload,
the operational profile is a small subset of the total, theoretically-possible state
space of the DD (Nop � 2n and Top � n · 2n).

5 Developing the Basis for Code Tracing: The Functional
Interface

The communication between OS kernel and DDs is not limited to the IRP
scheme. A DD also communicates with the OS kernel using a second inter-
face, which we onwards call the “functional interface”. Enabled by the concept
of dynamic linking, at this communication level the parties involved are kernel
libraries and DDs, as image files. In fact, this scheme forms the basis of OS mod-
ularity, and is the most commonly used data communication paradigm between
binaries. The OS provides a set of kernel libraries containing functions required
by the different kernel components. Each library publishes a list of the available
functions. On the other side, the DDs (as consumers of the services provided by
the libraries) contain a list of necessary libraries and for each of them a list of
the used functions from the respective library. For both kernel libraries and DDs
the lists mentioned above are stored in the headers of the binary files.

5.1 The PE/COFF Executable Format and DLL-Proxying

In Windows, the PE/COFF format [21] specifies the file headers that permit a
Windows executable file to publish the contained functions and variables (ex-
ports) and to use functions defined externally by another library (imports). The
example in Fig. 3 depicts a DD that imports functions implemented in two exter-
nal libraries, Lib1.sys and Lib2.dll. Each contains an Export Address Table
(EAT) that publishes a list of functions exported by the respective library. At
runtime, the DD links to the kernel libraries on demand, when the result of the
functions foo and, respectively, bar are needed. Therefore, the header of the DD
file contains an Import Address Table (IAT) for each of the needed libraries. The
IAT contains only the function names which are used in the DD’s code.

At DD load time, the OS automatically checks if all the required libraries are
present in the system by inspecting the DD’s IATs. If they cannot be found,
an error message is issued and the DD loading is aborted. At load time, no
verification is done to check if the libraries found actually contain the necessary

98 C. Sârbu, A. Johansson, and N. Suri

functions for the DD to execute correctly. Only at runtime, when a portion of
DD code containing calls to external functions is reached, the DD accesses the
associated library to utilize its services.

The work presented in this paper relies on the ability to capture the calls to
external functions at DD runtime. While various methods for capturing calls to
externally located functions exist (eg., Detours [22], Spike [23]), they are specific
to user-space software and are therefore not directly applicable to kernel-mode
programs. In contrast, we need a kernel space mechanism to monitor the function
calls. Therefore, we have chosen to implement a DLL-proxying technique. Briefly,
DLL-proxying consists of building a DLL library which act as a wrapper of the
original library. In order to leave the functionality of the DD unaffected, the
wrapper library has to implement all the functions required by the DD, or to
forward its calls to the original library. By modifying the IAT tables of the target
DD to point to the wrapper library instead of the original one, the wrapper
library (also called DLL-proxy) is interposed between the two parties. Section 7
details our implementation of DLL-proxies inside the Windows kernel.

Our kernel-mode library wrappers are used exclusively for capturing the se-
quences of functions called by a DD at runtime, when exercised by a selected
workload. Consequently, we only need to log the function names but not modify
any parameters or behavior of the wrapped kernel APIs. Therefore, the overhead
induced by the DLL-proxy is kept to minimum.

5.2 Call Strings as Code Path Abstractions

As external function calls correspond to DD code being executed as a result of
IRP requests (or other OS kernel maintenance requests), grouping them using
IRPs as boundaries is intuitive. Therefore, we introduce the notion of call string
as follows:

Definition 2 (Call String). A call string (CS) is a sequence of DD-external
function calls issued at runtime by a DD, delimited by incoming and outgoing
IRP requests.

In this paper we consider each CS an abstraction representing the code path
taken by the DD at execution time. As we use the incoming and outgoing IRP
requests as CS delimiters, each CS can be associated with a DD mode and,
subsequently, with an IRP dispatch function.

Illustrating the CS capturing method, the left part of Fig. 4 shows an abstract
representation of the WDM-compliant DD’s code with dispatch functions for
handling READ and WRITE requests. Assuming that the DD can handle only
those two IRP requests, the visited modes are defined by bit strings with length
two; the first bit is associated with READ and the second with WRITE operation.
Note that both dispatch subroutines call functions implemented externally by
other kernel libraries. Assuming that at a certain instant the DD receives the
READ request followed by an WRITE request, the log file that combines the events
recorded by monitoring the two communication interfaces is depicted on the

Execution Path Profiling for OS Device Drivers: Viability and Methodology 99

Driver code Log file

...

Dispatch_READ{

 ...

 a = foo_1 (x, y);

 b = foo_2 (z);

 ...

}

Dispatch_WRITE{

 ...

 c = bar_1 ();

 ...

bar_2 (x, y, z);

 ...

}...

. . .

. . .
IRP_MJ_READ (incoming, entering mode <10>)

foo_1
foo_2

IRP_MJ_READ (outgoing, exiting mode <10>)
IRP_MJ_WRITE (incoming, entering mode <01>)

bar_1
bar_2

IRP_MJ_WRITE (outgoing, exiting mode <01>)
. . .
. . .

}

} CS i+1, mode <01>

CS i, mode <10>

Fig. 4. The code path taken in a DD when
READ and WRITE requests are called

Wrapper code

...

NTSTATUS

FASTCALL

WrapperIofCallDriver(

 IN PDEVICE_OBJECT DeviceObject,

 IN OUT PIRP Irp)

{

 PrintOut("IofCallDriver");

 return IofCallDriver(DeviceObject, Irp);

}

...

Fig. 5. A wrapper for the NTOSKRNL::
IofCallDriver API

right side of Fig. 4. Hence, the call strings CSi and CSi+1 can be constructed
and associated with the modes < 10 > and, respectively, < 01 >.

Consequently, the call CSs can be studied from two perspectives: (a) per mode
basis, i.e., CSs belonging to the same DD mode are compared to reveal possi-
ble differences in the code paths taken each time the DD performs the activity
associated with the respective mode, and (b) per CS basis, i.e., all CSs are com-
pared among themselves to identify similarities and to group them accordingly
in equivalence classes. Hence, we define the term execution hotspot as follows:

Definition 3 (Execution Hotspot). A group of similar CSs belonging to the
same equivalence class represents an execution hotspot. The magnitude of each
hotspot is given by the sum of occurrences of the CSs contained within the equiva-
lence class.

The methodology for building kernel DD profiles presented in this paper reveals
the execution hotspots together with their magnitudes. The construction of the
equivalence classes is achieved by employing a cluster analysis algorithm, as
described in the following section.

6 Identifying Execution Hotspots: Call String Clustering
Aspects

Given the size of the pool of data collected in the monitoring phase, a data
clustering method greatly facilitates organizing and interpreting the data trends.
Cluster analysis is a multivariate technique that helps partitioning a population
of objects into equivalence classes. The partitioning decision is taken on object
similarity, i.e., similar objects are grouped together in the same cluster. The most
common clustering approaches are hierarchical and partitional. Usually slower
than hierarchical algorithms, the partitional clustering initially divides object
population in k clusters (randomly), improving the clusters at each step by
redistributing the objects. Hierarchical clustering approaches fall in two classes,
agglomerative and divisive.

100 C. Sârbu, A. Johansson, and N. Suri

Agglomerative clustering (also called bottom-up clustering) initially assigns
each object into its own cluster, at each step similar clusters are merged. The
agglomerative clustering algorithms stop when all objects are placed in a single
cluster, or when a number of k clusters (given as a parameter to the algorithm)
remain. Divisive clustering (top-down clustering) algorithms initially assign all
the objects from a given population to a single cluster, divided at every step in
two non-empty clusters. A divisive clustering algorithm stops when each object
sits in an own cluster or when a number of k clusters is reached.

In this paper we use automated agglomerative analysis to divide the CS popu-
lation into similar clusters. We use AgNes, an agglomerative algorithm provided
by the R statistical programming environment [24]. AgNes requires as input a
matrix containing the distances between every pair of objects, in our case CSs.
It outputs a dendrogram, which is a tree-like representation of the clustering.
The Figs. 10 and 11 represent examples of such dendrograms. The CSs are rep-
resented as leaves, and branches intersect at a height equal to the dissimilarity
among the children. Cutting the dendrogram at a given height reveals the clus-
ters and the contained call sequences at the respective distance. That is, a cutoff
of the dendrogram indicates the equivalence classes that partition the CS pop-
ulation for the respective distance. For a cutoff set at 0, the equivalence classes
contain only the CSs which are identical. Therefore, the cutoff value acts as a
tunable mask for CS diversity.

6.1 Metrics to Express Call String Similarity

To obtain relevant dendrograms of the CS clusters, an appropriate similarity
metric has to be first selected. In the areas of bio-informatics and record linkage
(duplicate detection) researchers have developed a series of metrics to quantify
the relation between two strings. Depending on their application area, some
metrics express the similarity while other measure the difference (dissimilarity)
of the compared strings.

The Levenshtein distance (dL) is based on the edit distance between the com-
pared strings. Given two strings s1 and s2 whose distance needs to be com-
puted, Levenshtein distance express the minimum number of operations needed
to transform s1 in s2 or viceversa. The considered operations are character insert,
delete or substitution and they all have the cost of 1. Used in bio-informatics to
decide global or local alignments for protein sequences, Needleman-Wunsch and
Smith-Waterman distances are versions of the Levenshtein metric, additionally
considering gap penalties (gap = subsequence that do not match).

Jaro distance is not based on the edit distance, but instead on the number and
order of the common characters. The Jaro distance is expressed by the following
formula:

dJ =
1
3

(
m

|s1|
+

m

|s2|
+

m − t

m

)

(1)

where m is the number of matching characters and t is the number of necessary
transpositions. Two characters are considered matching if they are not farther

Execution Path Profiling for OS Device Drivers: Viability and Methodology 101

than
⌊

max(|s1|,|s2|)
2

⌋
− 1 from each other. An extension of the Jaro distance was

proposed by Winkler, in order to reward with higher scores the strings that
match from the beginning (they share a common prefix).

Therefore, the Jaro-Winkler distance is defined by the formula

dJW = dJ + [0.1 · l(1 − dJ)] (2)

where l is the length of the common prefix and dJ is the Jaro distance between
the strings.

Many other distance metrics exists and were evaluated for various applica-
tions [25]. We have also investigated several of them and subsequently chosen
the Levenshtein and Jaro-Winkler metrics, as we believe they express best the
distance among the CSs. Levenshtein was selected as it captures neutrally the
variability of the CSs. As we expect the CSs to contain short, repetitive subse-
quences (generated by loops in the code path) and common sequences (generated
by shared helper functions), we have also selected the Jaro-Winkler metric as it
favors similarities between CSs showing this behavior.

To balance their effects and to minimize the impact of the metric choice on
the final cluster structures, we combined them in a compound measure, a simple
weighted average:

dC =
norm(dL) + norm(dJW)

2
(3)

Our compound metric uses normalized values for both Levenshtein and Jaro-
Winkler functions, therefore 0 ≤ dC ≤ 1. Being a dissimilarity function, small
values of dC indicate high similarity between the compared CSs. The distance
matrix required by AgNes was computed using dC for expressing the distance
among every CS pairs.

6.2 Cluster Linkage Methods and Agglomeration Coefficient

Besides the distance matrix, AgNes requires that a clustering method is spec-
ified. Simple linkage merges at every step two clusters whose merger has the
smallest diameter. This method has as disadvantage a tendency to form long
cluster chains (i.e., at every step a single element is added to an existing clus-
ter). Complete linkage merges clusters whose closest member objects have the
smallest distance. This linkage method creates tighter clusters but is sensitive to
outliers. To alleviate the disadvantages of simple and complete clusterings, av-
erage linkage groups clusters whose average distance between all pairs of objects
is minimal.

AgNes provides a standard measure to express the strength of the cluster-
ing found in the population of CSs. A strong clustering tendency means larger
inter-cluster dissimilarities and lower intra-cluster dissimilarities. If d(i) is the
dissimilarity of object i to the first cluster it is merged with divided by the dis-
similarity of the last merger, the agglomeration coefficient (AC) is expressed by

102 C. Sârbu, A. Johansson, and N. Suri

AgNes as the average of all 1−d(i). With 0 ≤ AC ≤ 1, larger AC values indicate
a good cluster structure of the object population.

For our clustering analysis experiments presented in Sect. 7 we have used the
average linkage method as we believe this choice factors out best the impact of
CS distance variance among the object population.

7 Evaluating the Viability of the Execution Profiling
Methodology

For a comprehensive evaluation of the dual-interface DD profiling method pre-
sented in this paper, we have used it against the flpydisk.sys (v5.1.2600.2180),
the floppy disk driver provided by Windows XP SP2.

Figure 6 depicts our experimental setup. To capture the requests occurring on
the IRP interface of the target DD we have built a filter driver and installed it
between the monitored DD and the I/O Manager. The filter driver receives the
incoming and outgoing IRP requests, logs them to a file and forwards them to the
original recipient. As the filter driver does not rely on the implementation details
of the underlying DD, it can be used to monitor virtually any WDM-compliant
DD, as shown in practice by the experimental work in [12].

The monitoring of the functional interface is more complex, as it requires
building a wrapper library for each of the kernel libraries imported by the
floppy driver (Fig. 6). flpydisk.sys imports functions from two kernel libraries:
NTOSKRNL.EXE (61 functions) and HAL.DLL (4 functions). After building the li-
brary wrappers, the IAT tables of the target DDs were modified in order to look
for the wrappers instead of the original libraries. Each API wrapper was built
using exclusively the function prototypes provided in the header files available
publicly from Windows DDK package. Each time the DD called a function, the
API wrapper is called instead of the original function. The API wrappers are de-
signed as extremely simple C constructs in order to minimize the computational
overhead. When a wrapper is called, the call is logged and the call parame-
ters are forwarded, unchanged, to the original function from the original library,

U
SE

R
SP

A
C

E
K

ER
N

EL
 S

PA
C

E

Workload

I/O
Manager

Floppy
Driver

NTOSKRNL.EXE

HAL.DLL

IRP Interface Functional interface

Wrapper libs.

Log files

Filter
Driver

Fig. 6. Our DD monitoring strategy

Call string list

1

Encoded
call string list

2

3

Distance
matrix

4

5 6

Distinct
call string list

Fig. 7. Our cluster analysis process

Execution Path Profiling for OS Device Drivers: Viability and Methodology 103

as depicted by the code snippet in Fig. 5. In this figure, IofCallDriver is the
original function implemented by NTOSKRNL.EXE and WrapperIofCallDriver is
our wrapper.

After the floppy driver is exercised by a relevant workload, the resulted log
files are analyzed offline by a software application that extracts the CSs and
constructs distance matrix files. These files are fed to the AgNes algorithm which
builds clusterings of the CSs. More precisely, the procedure followed to build the
clusterings that evaluate the CS relative similarity is depicted in Fig. 7: (1)
collect the CSs by using the monitoring logs; (2) encode each function call to an
Unicode character to be able to apply the string metrics; (3) calculate a distance
matrix containing the distances between all pairs of CSs; (4) select the distinct
CSs and count for each one the occurrence rate; (5) construct a clustering from
all distinct CSs to evaluate inter-CS similarities; (6) for each mode, construct a
clustering of CSs to reveal intra-mode paths.

Table 1. The workloads utilized to exercise the floppy driver and the overall experi-
mental outcomes

Benchmarks #Called Imports #CSs Benchmark
for flpydisk.sys Total NT1 HAL2 #Modes

Total Distinct
AC

Description
Sandra 27 25 2 3 9545 51 .859 Performance benchmark
DiskTestPro 28 26 2 5 588 13 .735 Surface scan, format
BurnInTest 21 19 2 5 1438 24 .823 Reliability benchmark
Enable Disable 42 38 4 3 136 10 .388 DD load and unload
DC2 21 19 2 4 5102 9 .644 Robustness benchmark

To exercise the DD properly, we have used commercial performance and stabil-
ity benchmark applications which are designed for testing the floppy disk drive.
We have also used a robustness testing tool, DC2 (Device Path Exerciser). DC2 is
part of the DDK package and evaluates if a DD submitted for certification with
Windows is reliable enough for mass distribution. It sends the targeted DD a va-
riety of valid and invalid (not supported, malformed etc.) I/O requests to reveal
implementation vulnerabilities. The Table 1 lists the outcomes and provides a
comparative evaluation of the clustering strength (see Sect. 6.2).

Sandra was the workload that issued the highest number of distinct CSs (51
out of 9545), showing the highest cluster strength in the distinct CS population,
with AC = 0.859. Also, the DD visited only three modes, intuitively indicat-
ing that this workload might have the strongest tendency to reveal execution
hotspots. At the other extreme, Enable Disable only revealed 10 distinct CSs
(out of 136), but instead the calls to the external functions were the most diverse,
38 from NTOSKRNL.EXE and 4 from HAL.DLL. As the agglomerative coefficient of
this workload is relatively small, we expect that Enable Disable has the weakest
clustering tendency.

1 The number of functions called from NTOSKRNL.EXE.
2 The number of functions called from HAL.DLL.

104 C. Sârbu, A. Johansson, and N. Suri

7.1 Revealing the Execution Hotspots: MDS Plots of the CSs

To visualize the clustering tendency of the CSs generated by the used workloads
and, implicitly, the execution hotspots in floppy driver’s code, we used a mul-
tidimensional scaling (MDS) plot. MDS is a statistical technique designed to
graphically express the degree of similarity or dissimilarity between objects. The
points representing similar objects are clustered together in different regions of
the 2D-space depicted by the MDS plot, while the points representing dissimilar
objects are placed to be far apart from each other. The MDS plot in Fig. 8 is
computed using the already available distance matrices.

●●●●

●●

●●

●●

●●

●●

●●

●●

●

Sandra

DiskTestPro

Enable_Disable

BurnInTest

DC2

Fig. 8. MDS plot of the CSs for each work-
load

●

●

●

●●

●●

●●

●●

●●

●

●●

●●

●

●

ALL except DC2
DC2

●●

●

Fig. 9. MDS plot of the execution hotspots
with their magnitudes

With a high AC, Sandra forms the biggest clusters mostly in the center of the
figure, while the areas exercised by the Enable Disable are located farther apart
from each other. This visual representation of the CSs also helped reveal another
tight cluster close to the center of the Fig. 8, generated by the BurnInTest
workload. Also, DiskTestPro’s executions form a hotspot, located in the second
quadrant of Fig. 8. Overall, the grouping of the CSs in the middle of the MDS
plot indicates that most of them share a certain degree of similarity.

Interestingly, the CSs generated by DC2 are located quite differently from
the rest of other CSs. This is explained by the fact that DC2 is a robustness
testing tool, therefore accessing areas of code seldomly visited under common
executions. To better substantiate this tendency, Fig. 9 represents the same MDS
plot, where each CS was enhanced with the magnitude of the associated CS. That
is, a bigger circle represents a high rate of occurrence of the respective CS. The
circles are scaled using a logarithmic function (size = log(magnitudeCS)) in
order to create a visual balance between CSs having very different occurrence
rates. Additionally, the execution hotspots generated by the first four workloads
from Table 1 were merged, while the hotspots generated by the robustness testing

Execution Path Profiling for OS Device Drivers: Viability and Methodology 105

tool DC2 were represented in gray. As DC2’s hotspots are off-centered, it becomes
apparent that the DC2 covers very few of the execution hotspots generated by
all other studied workloads.

Nevertheless, the Figs. 8 and 9 validate our methodology and graphically
motivate the usage of execution profiles as a prerequisite step for testing. We
believe that a significant amount of testing can be saved by redistributing the
effort to covering the execution hotspots. Doing so significantly reduces the test
effort, while the test adequacy remains unaffected. While test case filtering is
not the scope of this paper, we hypothesize that an iterative method based on
comparisons of test suites against an existing execution hotspot map can be
devised in order to guide this process.

7.2 Similarity Cutoffs: Testing Overhead Versus Diversity Masking

The dendrograms obtained at steps 5 and 6 in Fig. 7 represent useful support for
deciding which code paths to test. To ensure high accuracy for the subsequent
testing campaigns with respect to the execution hotspots, one should develop
test cases that exercise the DD in the same manner as the workload does, or,
alternatively, use the test cases themselves as workload for exercising the DD in
the profiling phase.

We believe that the testing effort can be significantly reduced by testing only
the distinct CSs. A prioritization scheme for this procedure should consider (and
therefore be indexed by) the number of occurrences associated with each CS
(magnitudeCS). Intuitively, a subsequent test campaign can reduce its overhead
by testing only one CS per cluster. Figure 10 illustrates this concept: by setting a
similarity cutoff T = 0.2, the dendrogram is split into four clusters and five alones
(CS0, 1, 15, 22 and 23). This indicates nine code paths that must be tested: the
alones and any one CS from each of the four clusters, since all the CSs that
are contained in the cluster are considered similar. With T = 0, 24 CSs should
be tested in order to achieve complete hotspot coverage. Therefore, setting the
T = 0.2 gives an overall reduction of 62.5% of the testing cost (assuming that
the cost of testing is equally distributed among the 24 distinct CSs). In practice,
the similarity cutoff T has to be chosen as close to zero as possible, because
large values of T have a tendency to mask CS diversity. Actually, dendrograms
support the similarity threshold decision by their structure. If the CSs cluster at
very low heights, a small cutoff value will group many CSs together, significantly
reducing the test efforts without having to pay a high cost to diversity masking.

In contrast, Fig. 11 depicts the dendrograms of the CSs for each mode. In this
representation it is apparent that in the visited modes the DD was taking at least
three different paths into the code. The heights at which they cluster indicate
that the CSs are quite dissimilar, even though they are basically associated with
the same DD functionality. This reveals that the IRP dispatch subroutines are
quite complex, possibly containing multiple decision branches in the code. In the
case of the per-mode dendrograms (Fig. 11), a similarity cutoff T smaller than
the shortest cluster will reveal all the code paths taken inside the mode. Though,
to balance the testing efforts, T should be chosen anywhere between the height

106 C. Sârbu, A. Johansson, and N. Suri

0.8 0.6 0.4 0.2 0.0

Height MODE

CS0

CS15

CS19

CS20

CS1

CS2

CS7

CS16

CS4

CS13

CS17

CS14

CS3

CS5

CS6

CS9

CS10

CS8

CS11

CS12

CS18

CS21

CS22

CS23

T

0001000

0001000

0001000

0001000

0001000

0010000

0000100

0000100

0010000

0000100

0000100

0100000

0001000

0001000

0000100

0000100

0000100

0000100

0000100

0010000

0001000

0001000

0001000

1000000

Diversity masking Testing effort

0.02

Fig. 10. BurnInTest: A threshold set to 0.2
reveals a clustering with 4 clusters and 5
alones (62.5% test cost reduction)

0.5 0.4 0.3 0.2 0.1 0.0

0000100 (DEVICE_CONTROL)

Height

CS1

CS4

CS7

CS16

CS17

CS5

CS6

CS10

CS8

0.8 0.6 0.4 0.2 0.0

0001000 (WRITE)

Height

CS12

CS18

CS21

CS13

CS14

CS22

CS23

CS15

CS19

CS20

0.5 0.4 0.3 0.2 0.1 0.0

0010000 (READ)

Height

CS2

CS9

CS11

0100000 (CLOSE): CS3 only

1000000 (CREATE): CS0 only

0.54

1.0

0.18

Fig. 11. BurnInTest: The distinct CSs
called by every mode

of the smallest cluster and 1. With T = 1 the granularity of testing is the same
as in our previous approach [11].

This represents one of the key contributions of this paper in contrast to our
previous work, where the smallest DD behavior granularity unit was the notion
of mode. Using the dual-interface approach presented in this paper, a subsequent
testing technique can take advantage of the smaller granularity offered by the
new concept of CS.

8 Discussion and Results Interpretation

Identification of Repeating Functions: Table 3 displays five distinct CSs, as
generated by the BurnInTest workload. The respective CSs are highlighted also
in Fig. 11. CS15 is formed by a call IofCompleteRequest function, followed by
ExInterlockedRemoveHeadList and KeWaitForSingleObject, repeating twice.
The distance from CS15 to CS19 is 0.54 and to CS23 is 1.0; the distance from
CS19 to CS20 is 0.18 (also depicted in Fig. 11). The low similarity values shared
by the CS15, CS19 and CS20 are mainly given by the fact that the sequences
share a common prefix and the group of two functions that repeat themselves.
These repetitions indicate the presence of short loops in the DD’s code. In par-
ticular, according to the DDK documentation, ExInterlockedRemoveHeadList
routine “removes an entry from the head of a doubly linked list” and
KeWaitForSingleObject “puts the current thread into a wait state”. CS23 is
heavily penalized when related to CS15 because the position of the only com-
mon character is not the same in the two CSs. In contrast, the distance from
CS23 to CS0 is (only) 0.83 because both CSs are very short.

Figure 10 show cases when two CSs are very similar, even though they belong
to different modes (i.e., CS11 and CS12, at a distance of 0.02). We believe that

Execution Path Profiling for OS Device Drivers: Viability and Methodology 107

Table 2. Five functions and their encod-
ings (used in Table 3)

Function Name Encoding Char
IofCompleteRequest a
ExInterlockedRemoveHeadList b
KeWaitForSingleObject c
ExAcquireFastmutex d
ExReleaseFastMutex e

Table 3. Four distinct CSs issued by the
BurnInTest

CS Name Encoding #Occurences
CS0 a 144
CS15 abcbc 2
CS19 abcbcbcbcbc 2
CS20 abcbcbcbc 1
CS23 dea 13

they share the same or large portions of a dispatch function. It is also possible
that they share a large amount of helper functions, inside the DD’s code. We are
currently investigating in more depth the reasons behind this observed behavior
on publicly available driver source code (the serial port driver).

Frequently Used Kernel Services: Our profiling approach reveals that the
set of functions frequently used by a DD at runtime is very small. Table 4
lists the 20 function calls that make 99.97% of all the imports called by the
flpydisk.sys at runtime in our experiments. In [1] Mendonca and Neves have
chosen a set of 20 DDK functions for fault injection experiments by inspecting
the IAT tables of all the DDs belonging to several Windows installations. Our
results show that their static approach to select kernel APIs is irrelevant in
such dynamic environments, as the set of functions called at runtime is radically
different. Therefore, we recommend that subsequent fault injection campaigns
should primarily target functions having higher runtime occurrence index.

Table 4. The function calls accounting for 99.97% of all recorded calls, for all work-
loads, sorted descending on occurrence. ExAcquireFastMutex and ExReleaseFastMutex
belong to HAL.DLL, the rest to NTOSKRNL.EXE library.

Function Name #Occ. [%] Function Name #Occ. [%]
ExAcquireFastMutex 60414 18.40 MmMapLockedPagesSpecifyCache 8178 2.49
ExReleaseFastMutex 60414 18.40 MmPageEntireDriver 24 0.01
IofCallDriver 45976 14.00 MmResetDriverPaging 23 0.01
KeInitializeEvent 40777 12.42 KeGetCurrentThread 10 0.00
IoBuildDeviceIoControlRequest 40771 12.41 KeSetPriortyThread 10 0.00
ExInterlockedRemoveHeadList 22007 6.70 ObfDereferenceObject 10 0.00
ExInterlockedInsertTailList 16123 4.91 ObReferenceObjectByHandle 10 0.00
IofCompleteRequest 11562 3.52 PsCreateSystemThread 10 0.00
KeWaitForSingleObject 11032 3.36 PsTerminateSystemThread 10 0.00
KeReleaseSemaphore 11003 3.35 ZwClose 10 0.00

9 Conclusions and Future Research Directions

In this paper we have presented a driver profiling technique that monitors the
activity of a kernel driver at runtime onto two communication interfaces. Our
technique disconnects execution profiling from the source code access require-
ment, for every of the involved OS kernel components. We consider that the
driver is receiving requests on the IRP interface and start executing the IRP-
associated activity. We revealed the effect of this computation as a sequence of

108 C. Sârbu, A. Johansson, and N. Suri

calls to external functions, by monitoring the driver’s functional interface. The
CSs obtained were encoded as character strings and cross-compared for similar-
ity. The distinct CSs were found to represent a very small number of the total
number of CSs recorded during our experiments, indicating that the number of
code paths taken by a driver at runtime is very small. Moreover, we employed an
agglomerative cluster analysis technique in order to group together similar CSs
and therefore suggest areas of code where the test effort of subsequent testing
campaigns should concentrate. Using the same technique, the CSs belonging to
the same mode were investigated and showed that the code paths taken by the
driver differs even when executing the same IRP dispatch subroutine, a tendency
that reveal code branches. Moreover, the MDS plots visually disclose the ten-
dency of the CSs to cluster by revealing the execution hotspots. At the same
time, the Figs. 8 and 9 show that DC2, a robustness testing tool for drivers from
Microsoft, does not cover the execution hotspots generated by the other realis-
tic workloads. This result intuitively supports the idea to re-balance the testing
effort to the revealed execution hotspots, thus enhancing the odds to find early
the faults having a high occurrence likelihood in the field.

Current research directions include the design and implementation of a fault
injection method for testing the robustness of OS kernel drivers, based on the
concepts introduced in this paper. The selection of test cases will consider the
execution hotspots generated by a prior driver execution profiling phase, in or-
der to reduce overall testing overhead. Test prioritization schemes will also be
employed by applying the techniques described in our previous work [11, 12].
We also intend to investigate the possibility to implement state-aware robust-
ness wrappers for kernel drivers, once we will establish a method for detecting
deviations from “correct behavior”.

References

1. Mendonca, M., Neves, N.: Robustness testing of the Windows DDK. In: Depend-
able Systems and Networks (DSN), June 2007, pp. 554–564 (2007)

2. Swift, M.M., Bershad, B.N., Levy, H.M.: Improving the reliability of commodity
operating systems. ACM Transactions on Computer Systems 23(1), 77–110 (2005)

3. Ganapathi, A., Ganapathi, V., Patterson, D.: Windows XP kernel crash analysis.
In: Large Installation System Administration Conference (LISA), pp. 12–22 (2006)

4. Albinet, A., Arlat, J., Fabre, J.C.: Characterization of the impact of faulty drivers
on the robustness of the Linux kernel. In: Dependable Systems and Networks
(DSN), pp. 867–876 (2004)

5. Arlat, J., Fabre, J.C., Rodriguez, M.: Dependability of COTS microkernel-based
systems. IEEE Transactions on Computers 51(2), 138–163 (2002)

6. Chou, A., Yang, J., Chelf, B., Hallem, S., Engler, D.R.: An empirical study of
operating system errors. In: Symposium on Operating Systems Principles (SOSP),
pp. 73–88 (2001)

7. Duraes, J., Madeira, H.: Multidimensional characterization of the impact of faulty
drivers on the operating systems behavior. IEICE Transactions on Information and
Systems 86(12), 2563–2570 (2003)

Execution Path Profiling for OS Device Drivers: Viability and Methodology 109

8. Murphy, B., Garzia, M., Suri, N.: Closing the gap in failure analysis. In: Dependable
Systems and Networks (DSN), pp. 59–61 (2006)

9. Johansson, A., Sârbu, A., Jhumka, A., Suri, N.: On enhancing the robustness of
commercial operating systems. In: Malek, M., Reitenspiess, M., Kaiser, J. (eds.)
ISAS 2004. LNCS, vol. 3335, pp. 148–159. Springer, Heidelberg (2005)

10. Johansson, A., Suri, N.: Error propagation profiling of operating systems. In: In-
ternational Conference on Dependable Systems and Networks (DSN), pp. 86–95
(2005)

11. Sârbu, C., Johansson, A., Fraikin, F., Suri, N.: Improving robustness testing of
COTS OS extensions. In: Penkler, D., Reitenspiess, M., Tam, F. (eds.) ISAS 2006.
LNCS, vol. 4328, pp. 120–139. Springer, Heidelberg (2006)

12. Sârbu, C., Suri, N.: Runtime behavior-based profiling of OS drivers. Technical
report, TR-TUD-DEEDS-05-02-2007 (2007),
http://www.deeds.informatik.tu-darmstadt.de/research/TR/
TR-TUD-DEEDS-05-02-2007-Sarbu.pdf

13. Weyuker, E.J., Jeng, B.: Analyzing partition testing strategies. IEEE Transactions
on Software Engineering 17(7), 703–711 (1991)

14. Weyuker, E.J.: Using operational distributions to judge testing progress. In: ACM
Symposium on Applied Computing, pp. 1118–1122. ACM Press, New York (2003)

15. Möller, K.H., Paulish, D.: An empirical investigation of software fault distribution.
In: First International Software Metrics Symposium (METRIC), May 1993, pp.
82–90 (1993)

16. Johansson, A., Suri, N., Murphy, B.: On the impact of injection triggers for os
robustness evaluation. In: International Symposium on Software Reliability Engi-
neering (ISSTA), pp. 127–136 (2007)

17. Ball, T., Larus, J.R.: Efficient path profiling. In: MICRO-29, pp. 46–57 (1996)
18. Larus, J.R.: Whole program paths. ACM SIGPLAN 34, 259–269 (1999)
19. Leon, D., Podgurski, A.: A comparison of coverage-based and distribution-based

techniques for filtering and prioritizing test cases. In: 14th International Sympo-
sium on Software Reliability Engineering (ISSRE), pp. 442–453 (2003)

20. Oney, W.: Programming the MS Windows Driver Model. Microsoft Press, Red-
mond (2003)

21. Microsoft Corporation, Visual Studio, Microsoft portable executable and common
object file format specification. Technical report (May 2006),
http://www.microsoft.com/whdc/system/platform/firmware/PECOFF.mspx

22. Hunt, G., Brubacher, D.: Detours: Binary interception of Win32 functions. In:
Proceedings of the 3rd USENIX Windows NT Symposium, July 1999, pp. 135–144
(1999)

23. Vasudevan, A., Yerraballi, R.: Spike: Engineering malware analysis tools using un-
obtrusive binary-instrumentation. In: Australasian Computer Science Conference
(ACSC), pp. 311–320 (2006)

24. Ihaka, R., Gentleman, R.: R: A language for data analysis and graphics. Journal
of Computational and Graphical Statistics 5(3), 299–314 (1996)

25. Cohen, W.W., Ravikumar, P., Fienberg, S.E.: A comparison of string distance
metrics for name-matching tasks. In: International Joint Conference on Artificial
Intelligence (IJCAI), pp. 73–78 (2003)

http://www.deeds.informatik.tu-darmstadt.de/research/TR/TR-TUD-DEEDS-05-02-2007-Sarbu.pdf
http://www.deeds.informatik.tu-darmstadt.de/research/TR/TR-TUD-DEEDS-05-02-2007-Sarbu.pdf
http://www.microsoft.com/whdc/system/platform/firmware/PECOFF.mspx

Analysis of a Software System with

Rejuvenation, Restoration and Checkpointing

Hiroyuki Okamura and Tadashi Dohi

Department of Information Engineering, Graduate School of Engineering
Hiroshima University, Higashi-Hiroshima, 739–8527, Japan

{okamu,dohi}@rel.hiroshima-u.ac.jp

Abstract. In this paper we consider operational software system with
two failure modes and develop a stochastic model to quantify steady-state
system availability. Three kinds of preventive/corrective maintenance
policies; rejuvenation, restoration and checkpointing, are incorporated in
our unified availability model. We propose a dynamic programming algo-
rithm to determine the joint optimal maintenance schedule maximizing
the steady-state system availability and calculate the optimal aperiodic
checkpoint sequence and preventive rejuvenation time simultaneously.
In numerical examples, the sensitivity of model parameters to character-
ize failure modes are examined, and effects of the preventive/corrective
maintenance policies are studied in details.

Keywords: software availability, rejuvenation, restoration, checkpoint,
optimization, dynamic programing algorithm.

1 Introduction

Checkpointing is one of the most important techniques in dependable comput-
ing. This is a quite simple technique to place checkpoints for reducing downtime
caused by a system failure in operational phase, and is effective with as a cost
data/environment diversity technique. Each checkpoint preserves status of a pro-
cess running on memory at a secondary storage devices such as a hard disk. Even
if a system failure occurs, the process can be restarted from the latest checkpoint
by referring to the status in the secondary storage device. Then the downtime
caused by the system failure may become shorter by controlling placement of the
checkpoints appropriately. Therefore, an appropriate checkpoint placement leads
to the improvement of system availability for operational software systems. On
the other hand, placing a checkpoint wasts a time overhead, called a checkpoint
overhead, so that the system availability may not be improved if checkpoints
are unnecessarily and excessively placed. Of course, since the lack of checkpoints
may increase the recovery overhead that is a time overhead to refer to the pre-
served status on contrary, there is a trade-off relationship on the frequency of
checkpoints. In fact, a huge number of checkpoint creation problems have been
considered during the last four decades.

First Young [58] obtained the optimal checkpoint interval approximately for
restarting a computation process after a system failure. Chandy et al. [10,11,53,57]

T. Nanya et al. (Eds.): ISAS 2008, LNCS 5017, pp. 110–128, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Analysis of a Software System 111

proposed some performance models for database recovery and calculated the op-
timal checkpoint intervals which maximize system availability or minimize an av-
erage overhead during normal operation. Since these early contributions, many
authors developed checkpoint models to determine the optimal checkpointing
schedules with respect to various dependability measures [3, 12, 14, 25, 26, 27, 28,
29,30,31,32,34,39]. For the good survey of this topic, see Nicola [35]. Most of the
above works focused on periodic checkpoint policies, i.e., the case where check-
point intervals are constant over time. Theoretically this type of policies may be
applicable only when system failure time is described as an exponential distributed
random variable. However, the periodic policy has been applied in the case where
system failures occur according to non-exponential distributions.

Toueg and Babaõglu [50] considered a non-exponential failure case and de-
veloped a dynamic programming (DP) algorithm to determine aperiodic check-
points. Variational calculus approaches in [18, 19, 33] are regarded as efficient
approximation methods to treat aperiodic checkpoint placement problems. Re-
cently, Dohi et al. [16] and Ozaki et al. [43] reconsidered a sequential checkpoint
placement algorithm and dealt with non-constant checkpointing schedules. Oka-
mura et al. [42] also developed a DP-based optimal checkpointing algorithm for
real-time applications and refined Toueg and Babaõglu’s [50] discrete DP algo-
rithm in the context of continuous time domain. In this way, many checkpoint
schemes have been extensively studied under general operational circumstances
described by non-exponential failure times.

Apart from the checkpointing, the software systems running continuously for
long time empirically causes system failures due to the aging. The aging in soft-
ware system is defined as cumulative error conditions like leaking memories and
zombie processes. Such aging-related bugs, which lead to resource exhaustion,
may exist in operating systems, middleware and application software. For in-
stance, typical operating system resources, swap space and free memory available
are progressively depleted due to defects in software such as memory leaks and
incomplete cleanup of resources after use. It is well known that software aging
will affect the performance of applications and eventually cause failures [1, 2, 9].
Software aging has been observed in widely-used communication software like
Internet Explorer, Netscape and xrn as well as commercial operating systems
and middleware. In such a situation, the failures caused by the software aging
cannot be distinguished from the common failures due to faults embedded in
the software. In addition, the assumption that system failure times follow non-
exponential distributions is more acceptable on the aging phenomenon rather
than the checkpointing environment.

A complementary approach to handle software aging and its related tran-
sient failures, called software rejuvenation, has already become popular as a
typical and low cost environment diversity technique of operational software.
Software rejuvenation is a preventive and proactive solution that is particularly
useful for counteracting the phenomenon of software aging. It involves stop-
ping the running software occasionally, cleaning its internal state and restarting
it. Cleaning the internal state of a software might involve garbage collection,

112 H. Okamura and T. Dohi

flushing operating system kernel tables, reinitializing internal data structures
and hardware reboot. In general, there is also a trade-off relationship between
a rejuvenation overhead and downtime due to a system failure. For instance,
Huang et al. [24] reported the aging phenomenon in telecommunication billing
applications where over time the application experiences a crash or a hang fail-
ure. Subsequently, many authors considered the similar problems as [24], i.e.,
how to determine the optimal software rejuvenation schedules [7,8,13,15,17,20,
22,36,37,38,40,44,46,47,48,49,51,52,54,55,56]. This motivates us to handle the
optimal rejuvenation schedule as well as checkpointing schedule.

Although these two software fault tolerant techniques are used for different
purposes, it should be noted that they are implemented in a real software op-
erational phase to complement each other. In other words, a unified model to
incorporate the checkpointing and rejuvenation is useful to quantify both effects
on system availability improvement. In the past literature, very a few papers
challenged to this interesting modeling. Gare et al. [21] took account of both
checkpointing and rejuvenation for a software system and evaluated its expected
completion time. Since their model assumes that the system executes a software
rejuvenation at a given checkpoint unless the system fails, the minimization of
the expected completion time was solved under a specific maintenance sched-
ule which consists of periodic checkpoint interval and the number to trigger
the rejuvenation. Bobbio et al. [6] focused on a modeling technique for soft-
ware system with rejuvenation, restoration and checkpointing. As an extension
of usual stochastic Petri nets [20], they applied so-called fluid stochastic Petri
nets to model behavior of the software system and assessed quantitative system
dependability. Unfortunately, there are only two papers to treat both the fault
tolerant techniques in a unified framework.

This paper challenges developing a stochastic model to quantify steady-state
system availability under three kinds of preventive/corrective maintenance poli-
cies; rejuvenation, restoration and checkpointing in a unified availability model.
In addition, we consider two failure modes; active and passive failures. These are
different points from our previous work [41, 42]. Especially, active and passive
failure modes concern failure detection in a distributed transmission system. Ac-
tive failures can immediately be detected when the failures occur. On contrary,
passive failures cannot detected unless the system performs a somewhat diag-
nosis action. The Internet service based on a distributed system using SOAP
(simple object access protocol) may have a similar failure mechanism, namely,
it faces a latency fault that cannot be detected immediately like passive failure
mode. We propose a DP algorithm to determine a joint optimal maintenance
schedule maximizing steady-state system availability and calculate the optimal
aperiodic checkpoint sequence and preventive rejuvenation time simultaneously.
The basic idea behind our DP algorithm comes from our research results in the
different (simpler) contexts [41, 42] and is further different from the classical
discrete DP algorithm in [50].

The remaining part of this paper is organized as follows. Section 2 describes a
software availability model with two failure modes incorporating the actions;

Analysis of a Software System 113

rejuvenation, restoration and checkpointing. After describing model assump-
tions, we formulate steady-state system availability. In Section 3, we develop
a DP-based optimization algorithm which maximize the steady-state system
availability. Section 4 presents numerical examples with respect to two differ-
ent failure distributions. Here sensitivity of the optimal checkpointing schedule
on model parameters are examined, and we investigate an effect of the preven-
tive/corrective maintenance policies in details. Finally the paper is concluded
with some remarks in Section 5.

2 Software Availability Modeling

2.1 Model Description

We consider an operational software system with two failure modes. Suppose
that the software system, e.g. a distributed storage system through the Internet
via SOAP, starts its operation at t = 0 and may deteriorate with time due to the
phenomenon of software aging. Let F (t) be the system failure time distribution
which is absolutely continuous and non-decreasing in time, where the probabil-
ity density function and the mean are given by f(t) and μf (> 0), respectively.
Without any loss of generality, we suppose that F (t) is IFR (Increasing Failure
Rate) and that the failure rate r(t) = f(t)/F (t) is increasing in t, where in gen-
eral ψ(·) = 1−ψ(·), though this assumption does not affect the latter theoretical
results. It is also assumed that the system failure can occur at one of two failure
modes; active failure mode and passive failure mode. Letting p ∈ [0, 1] (q = 1−p)
denote the probability that an active (passive) failure mode occurs, the corre-
sponding system failure time distribution in each failure mode is given by pF (t)
(qF (t)).

For the software system, checkpoints are placed aperiodically at time π =
{t1, t2, . . . , tN}, where N (> 0) is the number of checkpoints and is decided in
advance, so that a bounded number of checkpoints are placed, where each check-
point overhead to save the processes operated during two successive checkpoints
unless the system failure occurs is given by μc (> 0). If an active failure occurs
with probability p, then it can be detected immediately and a rollforward re-
covery takes place from the latest checkpoint. More specifically, when the active
failure occurs at time x ∈ (ti, ti+1] (i = 0, 1, . . . , N), the rollforward procedure
starts with the saved process information at ti and completes within a finite
time period. The restoration (recovery) overhead is ρ(x) = αx + β, where αx
denotes the time needed to re-execute the lost processes in the interval [ti, ti +x)
since the last checkpoint ti and the second term is a fixed part. Even after the
completion of restoration, the lost processes are recovered, it is evident that the
software system still ages. To restart the system, it is rejuvenated with the reju-
venation overhead μm (≥ 0) and can become as good as new, where the failure
rate r(t) is initialized.

On the other hand, if a passive failure occurs with probability q, then it is
regarded as a latent fault and cannot be detected immediately at the failure
time point. However, since the latency of a fault leads to a deterioration of

114 H. Okamura and T. Dohi

t0 = 0 t1

t2 T (= t3)

x

ρ(x)

failure time (active)

checkpoint

renewal point

failure

recovery overhead

t0 = 0

t1

Fig. 1. Possible realization of software system in an active failure mode

performance, it can be detected at the next checkpoint after the failure with a
somewhat diagnosis action of the system, so that upon a passive failure at time
x ∈ (ti, ti+1] (i = 0, 1, . . . , N) the rollforward procedure takes place from the
checkpoint ti to the fault detection point ti+1, where the associated restoration
overhead is given by ρ(ti+1 − ti) = α(ti+1 − ti)+β. In that sense, the probability
q (p) can be considered as an imperfect detection (perfect detection) probability.
After the lost processes are recovered, the software system is rejuvenated with
the same rejuvenation overhead μm and can become as good as new.

Let T (> 0) be a preventive maintenance time. If the software system does not
fail until the time T fortunately, the preventive maintenance for the unfailed sys-
tem is performed and the software system is rejuvenated with the overheadμm. We
define time length from t = 0 to the time when the software system can become as
good as new, as one cycle. The same cycle repeats again and again over an infinite
time horizon. Of course, during the rejuvenation, restoration and checkpointing,
the processes are not operated. The stochastic model under consideration general-
izes some existing checkpointing and/or rejuvenation models. For example, when
T → ∞, p = 1 (q = 0) and μm = 0, it reduces the basic checkpoint model with
aperiodic checkpoint intervals [43]. If we apply the exponential distribution as the
failure distribution, the corresponding model is the Vaidya’s model [53] with pe-
riodic checkpoint interval. As the simplest case, if N = 0, p = 1 (q = 0) and
ρ(x) = β, our model represents the well-known age replacement model [4].

The typical example for a software system with two failure modes would be
a distributed transmission system. In this system, the receiver can immediately
detect a transmission error by means of any coding technique such as Hamming
code, but it is difficult to identify whether the sender is alive or not, i.e. the
error of sender. In such a transmission system, two kinds of failures; active and
passive failures, are possibly considered. Figures 1 and 2 depict possible behavior

Analysis of a Software System 115

t0 = 0 t1 t2

T (= t3)

ρ(t2 − t1)

failure time (passive)

checkpoint

renewal point

failure

recovery overhead

t0 = 0

t1

latency

Fig. 2. Possible realization of software system in a passive failure mode

of the software system with two failure modes under three maintenance activities;
rejuvenation, restoration and checkpointing.

2.2 Formulation of System Availability

Of our concern here is the formulation of steady-state system availability which
is defined as the probability that the software system is operative in the steady
state. For the purpose, we define the renewal points at which the system fail-
ure time distribution is initialized. Since all the completion times of the pre-
ventive/corrective maintenance actions are the renewal points, we focus on the
probabilistic behavior between two successive renewal points, i.e. during the one
cycle. From the familiar renewal reward argument [4], the steady-state system
availability with the checkpoint schedule π and the preventive maintenance T is
represented by

Ass(π, T) = lim
t→∞

E[system operation time during [0, t)]
t

=
E[system operation time during one cycle]

E[time length of one cycle]
, (1)

where E denotes the mathematical expectation operator. Then, the problem is
to find the optimal maintenance schedule (π∗, T ∗) maximizing the steady-state
system availability Ass(π, T).

For the sake of simplicity, we rewrite the optimal maintenance schedule as
π̃ = {t1, . . . , tN , tN+1}, where tN+1 = T . During the interval between two suc-
cessive checkpoints [ti−1, ti), we derive the expected up time (expected operative

116 H. Okamura and T. Dohi

time) A(ti|ti−1) and the expected total time S(ti|ti−1) during [ti−1, ti) including
rejuvenation, restoration and checkpoint overheads by

A(ti|ti−1) =
∫ ti−ti−1

0
xdF (x|ti−1) + (ti − ti−1)F (ti − ti−1|ti−1), (2)

S(ti|ti−1) =p

∫ ti−ti−1

0
{x + ρ(x) + μm}dF (x|ti−1)

+ q{ti − ti−1 + ρ(ti − ti−1) + μm}F (ti − ti−1|ti−1)

+ {ti − ti−1 + μc}F (ti − ti−1|ti−1), (3)

respectively, where t0 = 0 and tN+1 = T . In the above expression, F (·|·) repre-
sents the conditional system failure time distribution defined by

F (s|t) = 1 − F (t + s)/F (t). (4)

In the last time period [tN , tN+1), it is noted that the preventive rejuvenation
is carried out unless the system failure occurs and that it can be regarded as a
boundary time period. Then, the expected up time and the expected total time
are given by

A(tN+1|tN) =
∫ tN+1−tN

0
xdF (x|tN) + (tN+1 − tN)F (tN+1 − tN |tN), (5)

S(tN+1|tN) =p

∫ tN+1−tN

0
{x + ρ(x) + μm}dF (x|tN)

+ q{tN+1 − tN + ρ(tN+1 − tN) + μm}F (tN+1 − tN |tN)

+ (tN+1 − tN + μm)F (tN+1 − tN |tN), (6)

respectively. Based on the above results, the steady-state system availability is
formulated as a fraction of time when the software system is up during one cycle,
and is straightforwardly given by

Ass(π̃) =
∑N

i=1 F (ti−1)A(ti|ti−1)
∑N

i=1 F (ti−1)S(ti|ti−1)
. (7)

3 Optimization Algorithm

Since the steady-state system availability is given as a function of π̃, the problem
is reduced to a non-linear maximization problem maxπ̃ Ass(π̃), provided that
the number of checkpoints N is given. It is worth noting that there is no effective
algorithm to find the optimal pair (π̃∗, N∗) simultaneously, so that the number
of checkpoints must be carefully adjusted in a heuristic manner. For a fixed N ,
the most popular method to find the optimal π̃∗ would be the Newton’s method
or its iterative variant. However, since the Newton’s method is a general-purpose
non-linear optimization algorithm, it may not often function better to solve the

Analysis of a Software System 117

maximization problem with many parameter constraints. In our maximization
problem, the decision variables π̃ are restricted. For such a sequential optimiza-
tion problem, it is well known that the dynamic programming (DP) can be used
effectively.

The essential idea of the DP algorithm is to solve recursively the optimality
equations which are typical functional equations. Hence, it seems to be straight-
forward to give the optimality equations which the optimal maintenance schedule
π̃∗ must satisfy. Suppose that there exists the unique maximum steady-state sys-
tem availability ξ. From the principle of optimality [5], we obtain the following
optimality equations for the maximization problem of the steady-state system
availability:

hi = max
ti

W (ti|t∗i−1, h1, hi+1), i = 1, . . . , N, (8)

hN+1 = max
tn+1

W (tN+1|t∗N , h1, h1), (9)

where the function W (ti|ti−1, h1, hi+1) is given by

W (ti|ti−1, h1, hi+1) =A(ti|ti−1) − ξS(ti|ti−1)

+ h1F (ti − ti−1|ti−1) + hi+1F (ti − ti−1|ti−1) (10)

and the function hi, i = 1, . . . , N + 1, are called the relative value functions.
Since Eqs. (8) and (9) are necessary and sufficient conditions of the optimal

maintenance schedule, the next step is to solve the above optimality equations.
In the long history of the DP research, there are a couple of algorithms to solve
the optimality equations. In this paper we apply the policy iteration scheme [45]
to develop the maintenance scheduling algorithm. The optimization algorithm
consists of two steps; the optimization of the maintenance schedule under a given
relative value function and the computation of the relative value function based
on the updated maintenance schedule. These steps are repeatedly executed until
the resulting the maintenance schedule converges to the optimal value.

In the optimization phase, it should be noted that the functions

W (ti|ti−1, h1, hi+1), i = 1, . . . , N, (11)

are not always concave with respect to the decision variables ti. Our problem is
the case. This fact leads to the difficulty for maximizing the steady-state system
availability. In order to overcome this problem, we define the following composite
function:

W (ti|ti−1, h1, W (ti+1|ti, h1, hi+2)), i = 1, . . . , N (12)

and propose to use it instead of W (ti|ti−1, h1, hi+1). Because the above composite
function is a concave function, it is possible to find the optimal maintenance
schedule in each iteration phase by maximizing the composite function for i =
1, . . . , N .

In the computation phase of the relative value function, on the other hand,
we solve the following linear system:

Mx = b, (13)

118 H. Okamura and T. Dohi

where for a given maintenance schedule, the relative value functions hi and the
maximum steady-state system availability ξ must satisfy where

[M]i,j =

⎧
⎪⎪⎨

⎪⎪⎩

−F (ti − ti−1|ti−1) if i = j and j �= N + 1,
1 if i = j + 1,
S(ti|ti−1) if j = N + 1,
0 otherwise,

(14)

x = (h2, . . . , hN , hN+1, ξ)′, (15)
b = (A(t1|t0), . . . , A(tN |tN−1), A(tN+1|tN))′, (16)

[·]i,j denotes the (i, j)-element of matrix, and the prime (′) represents transpose
of vector. The above results come from the direct application of the optimality
equations (8) and (9). Note that h1 = 0, since we are here interested in the
relative value function hi and ξ.

Finally, we given the DP-based maintenance optimization algorithm as fol-
lows.

DP-Based Optimization Algorithm

– Step 1: Give initial values

k := 0,

t0 := 0,

π̃(0) := {t
(0)
1 , . . . , t

(0)
N , t

(0)
N+1}.

– Step 2: Compute h
(k)
1 , . . . , h

(k)
N+1, ξ

(k) for the linear system (13) with the
optimal maintenance schedule π̃(k).

– Step 3: Solve the following optimization problems:

t
(k+1)
i := argmax

t
(k)
i−1≤t≤t

(k)
i+1

W (t|t(k)
i−1, 0, W (t(k)

i+1|ti, 0, h
(k)
i+2)),

for i = 0, 1, . . . , N − 1,

t
(k+1)
N := argmax

t
(k)
N−1≤t≤t

(k)
N+1

W (t|t(k)
N−1, 0, W (t(k)

N+1|t, 0, 0)),

t
(k+1)
N+1 := argmax

t
(k)
N ≤t<∞

W (t|t(k)
N , 0, 0).

– Step 4: For all i = 1, . . . , N + 1, if |t(k+1)
i − t

(k)
i | < δ, stop the algorithm,

where δ is an error tolerance level. Otherwise, let k := k + 1 and go to Step 2.

In Step 3, an arbitrary optimization technique has to be applied. Since the com-
posite function is concave in the range [ti−1, ti+1), it is relatively easy to calculate
the optimal checkpoint sequence and the optimal preventive maintenance time.
In fact, the golden section method [23] would be effective to find the solution. In
the following section, we give some numerical examples to calculate the optimal
maintenance schedule based on the proposed DP algorithm.

Analysis of a Software System 119

4 Numerical Examples

4.1 Exponential System Failure Time

Suppose that the system failure time obeys the exponential distribution; F (t) =
1 − exp(−t/μf), where μf represents the mean time to failure (MTTF) and the
failure rate is given by r(t) = 1/μf . To simplify the analysis, we assume α = 1
and β = 0, so that the restoration overheads in respective modes are given by
ρ(x) = x and ρ(ti+1 − ti) = ti+1 − ti. This means that the restoration oper-
ations require the exactly same time amount as the processing time since the
last checkpoint. Also, we set the other model parameters, μf = 1.0, μc = 0.0
and μm = 0.01, i.e. no checkpoint overhead is needed, to clarify the parameter
sensitivity. For the purpose to calculate the optimal maintenance schedule, we
developed a computation program written by C language with GSL (GNU Sci-
entific Library)1. This is available even in the case where the system failure time
is given by the non-exponential distributions.

Figure 3 illustrates the optimal maintenance schedule (checkpoints and pre-
ventive maintenance time) in the case where all the failures can occur in the
active mode. In the figure, the horizontal lines correspond to respective cases
where the numbers of checkpoints placed by the preventive maintenance time
are N = 0, 1, . . . , 10. Since the horizontal line indicates the elapsed time, each
point (dot) represents the time at which a checkpoint is placed, and the last
one is the preventive maintenance time. From this result, it is seen that the
resulting checkpoint interval becomes almost constant in all the cases. This is
because the system failure time is exponentially distributed and that the effect
of ‘truncation’ by the preventive maintenance does not appear in this example
(see [43]). Also it is observed that the checkpoint interval tends to be shorter as
the number of checkpoints over the time horizon [0, T) increases. Since in this
example the effect on checkpoint overhead is ignored, the system availability can
be improved without checkpointing cost.

Figure 4 shows the result in the case where all the system failures occur in
the passive mode. Though the behavior of the resulting checkpoint sequence
is almost same as the active failure case, the scale on the sequence is rather
different and the optimal checkpoint intervals are much shorter. This is because
the checkpointing may acts as a failure detector in the passive failure case. In
Fig. 5, we compare the maximum values of the associated steady-state system
availability in terms of the number of checkpoints. For both active and passive
failure modes, it can be seen that only a few checkpoints in early phase can
improve the steady-state system availability drastically, but the remaining (8 or
more) checkpoints make the system availability increasing slowly.

Next, we examine the dependence of checkpoint overhead on the optimal main-
tenance schedule, where μc = 0.005 is assumed. Figures 6 and 7 present the re-
spective optimal maintenance schedules in active and passive failure cases. In a

1 The program can be downloaded at
http://www.rel.hiroshima-u.ac.jp/okamu/chkpcomp/

120 H. Okamura and T. Dohi

 0 0.1 0.2 0.3 0.4 0.5

time

N=0
N=1
N=2
N=3
N=4
N=5
N=6
N=7
N=8
N=9

N=10

Fig. 3. Optimal maintenance schedule in exponential failure case (p = 0.0, μc = 0.0)

 0 0.1 0.2 0.3 0.4 0.5

time

N=0
N=1
N=2
N=3
N=4
N=5
N=6
N=7
N=8
N=9

N=10

Fig. 4. Optimal maintenance schedule in exponential failure case (p = 1.0, μc = 0.0)

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 2 4 6 8 10

st
ea

dy
-s

ta
te

 a
va

ila
bi

lit
y

of checkpoints

p=0.0
p=1.0

Fig. 5. Comparison of steady-state system availabilities with the optimal maintenance
schedules in exponential failure case (μc = 0.0)

fashion similar to the previous examples with μc = 0.0, it is seen that the opti-
mal checkpoint intervals become constant. Figure 8 plots the maximized values
of the steady-state system availability with respect to the number of checkpoints.

Analysis of a Software System 121

 0 0.2 0.4 0.6 0.8 1 1.2

time

N=0
N=1
N=2
N=3
N=4
N=5
N=6
N=7
N=8
N=9

N=10

Fig. 6. Optimal maintenance schedule in exponential failure case (p = 0.0, μc = 0.005)

 0 0.2 0.4 0.6 0.8 1 1.2

time

N=0
N=1
N=2
N=3
N=4
N=5
N=6
N=7
N=8
N=9

N=10

Fig. 7. Optimal maintenance schedule in exponential failure case (p = 1.0, μc = 0.005)

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 2 4 6 8 10

st
ea

dy
-s

ta
te

 a
va

ila
bi

lit
y

of checkpoints

p=0.0
p=1.0

Fig. 8. Comparison of steady-state system availabilities with the optimal maintenance
schedules in exponential failure case (μc = 0.005)

The result indicates the flat movement in accordance with the frequency of check-
point placement. In other words, the maximized system availability with check-
point overhead is less sensitive than no overhead case. Therefore as the checkpoint

122 H. Okamura and T. Dohi

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

time

N=0
N=1
N=2
N=3
N=4
N=5
N=6
N=7
N=8
N=9

N=10

Fig. 9. Optimal maintenance schedule in Weibull failure case (p = 0.0, μc = 0.0)

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

time

N=0
N=1
N=2
N=3
N=4
N=5
N=6
N=7
N=8
N=9

N=10

Fig. 10. Optimal maintenance schedule in Weibull failure case (p = 1.0, μc = 0.0)

 0.96

 0.965

 0.97

 0.975

 0.98

 0.985

 0.99

 0.995

 1

 0 2 4 6 8 10

st
ea

dy
-s

ta
te

 a
va

ila
bi

lit
y

of checkpoints

p=0.0
p=1.0

Fig. 11. Comparison of steady-state system availabilities with the optimal maintenance
schedules in exponential failure case (μc = 0.0)

overhead gets close to the preventive maintenance overhead, the checkpoint be-
comes unnecessary in the case of exponential failure, so that the accumulation of
checkpoint overheads penalizes the increase of system availability.

Analysis of a Software System 123

4.2 Weibull System Failure Time

It is more appropriate to consider the non-exponential case if the software system
may deteriorate by the aging. Suppose that the system failure time distribution
is given by the Weibull failure distribution:

F (t) = 1 − exp

{

−
(

t

η

)φ
}

, (17)

where η (> 0) and φ (> 0) are scale and shape parameters. If φ > (<) 1,
then the system failure time distribution is IFR (DFR). The case with φ = 1
corresponds to the exponential distribution. The MTTF and the failure rate for
the Weibull distribution are given by μf = ηΓ (1 + 1/ψ) and r(t) = φtφ−1/ηφ,
respectively, where Γ (·) is the standard gamma function. In this example, we set
φ = 5.0 and adjust the scale parameter so as to satisfy that MTTF just equals
1.0. The other model parameters are same as those used in the exponential case.

Figures 9 through 11 show the optimal maintenance schedules and their as-
sociated maximum steady-state system availabilities in the Weibull failure case.
Unlike the exponential failure case, the optimal checkpoint intervals are not con-
stant and can be characterized as a decreasing sequence in the IFR case. More-
over, in the Weibull case, the checkpoints are placed in the later phase than the
exponential failure case. This is caused by the characteristics of the Weibull dis-
tribution. Since φ = 5 is assumed in this example, the variance of system failure
time, η2{Γ (1 + 2/ψ) − [Γ (1 + 1/ψ)]2}, takes a small value, say, 0.0525. That is,
the system failure may frequently occur around the MTTF (= 1.0) but not in
the early phase. Therefore, as the result, the checkpoint tends to be placed in
the later phase.

In the passive failure mode (see Fig. 10), it is found that the resulting check-
points are shifted to the early operational phase compared to those in the active
failure mode. This is because the checkpointing behaves like a failure detector for
passive failures, and then the small variance of system failure time affects to the
checkpoint placement more than the active failure case. Figure 11 explores the
dependence of the steady-state system availability with the optimal maintenance
schedule. From this figure, we observe that the system availability in the case of
the Weibull failure distribution can be improved much more than the exponen-
tial failure case, by controlling the number of checkpoints. This phenomenon is
also caused by the small variance in the Weibull system failure case.

Figures 12 and 13 show the results on the optimal maintenance schedule in
μc = 0.001. Since this is just 10% of the preventive rejuvenation overhead, the
optimal checkpoint intervals do not change in comparison with the case of μc = 0.
However, a remarkable change does appear in the determination of the number
of checkpoints. Figure 14 presents the maximized system availability for varying
the number of checkpoints, N = 0, . . . , 10. Dissimilar to the other cases, the sys-
tem availability becomes a unimodal function of the number of checkpoints, and
there is an optimal number of checkpoints. Concretely speaking, it is optimal to
place two checkpoints over the whole operation period, N∗ = 2, in both active

124 H. Okamura and T. Dohi

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

time

N=0
N=1
N=2
N=3
N=4
N=5
N=6
N=7
N=8
N=9

N=10

Fig. 12. Optimal checkpointing and maintenance times in Weibull failure case (p = 0.0,
μc = 0.001)

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

time

N=0
N=1
N=2
N=3
N=4
N=5
N=6
N=7
N=8
N=9

N=10

Fig. 13. Optimal checkpointing and maintenance times in Weibull failure case (p = 1.0,
μc = 0.001)

 0.96

 0.965

 0.97

 0.975

 0.98

 0.985

 0.99

 0.995

 1

 0 2 4 6 8 10

st
ea

dy
-s

ta
te

 a
va

ila
bi

lit
y

of checkpoints

p=0.0
p=1.0

Fig. 14. Maximum steady-state availability in Weibull failure case (μc = 0.001)

and passive failure modes. This phenomenon can be explained as follows. In the
case of exponential failure with constant failure rate, the preventive rejuvena-
tion does not improve the system availability. This implies that the preventive

Analysis of a Software System 125

rejuvenation time T should be infinity if an infinite number of checkpoints are
allowed. On the other hand, in the Weibull failure case with IFR property, the
software rejuvenation as a preventive maintenance is definitely necessary to im-
prove the system availability. In other words, even if an unbounded number of
checkpoints are placed, the optimal preventive maintenance time should be finite.
This implies that the checkpoint placement problem with a finite time horizon is
significant for the maintenance optimization with rejuvenation, restoration and
checkpointing.

5 Conclusions

In this paper, we have considered an operational software system with two failure
modes; active and passive failures, and developed a stochastic model with three
preventive/corrective maintenance actions; rejuvenation, restoration and check-
pointing. We have proposed a dynamic programming algorithm to determine a
joint optimal maintenance schedule maximizing steady-state system availability.
In numerical examples, dependence of the optimal maintenance schedule which
involves checkpoint sequence and preventive rejuvenation time, on some model
parameters characterizing system failure tendency, has been examined in details.

Lessons learned from the numerical examples are that (i) the optimal check-
point interval for exponential failure distribution is always constant, (ii) the
optimal checkpoint interval in the case of IFR forms a deceasing sequence, (iii)
checkpoints should be dense in the case where the ratio of passive failure modes
is large, (iv) an optimal design of the number of checkpoints is needed in the
IFR case with checkpoint overhead. The observations (i) and (ii) are analogue
to the existing results from the checkpoint placement without preventive main-
tenance [43]. But the remaining observations have not been known yet in the
past literature. These experimental insights would also be useful to design the
software system which provides the Internet services, such as a Web-based ap-
plication.

In future, we will refine the proposed DP-based algorithm by using a
discretization technique with respect to computational speed, and develop an
on-line maintenance algorithm to control rejuvenation, restoration and check-
pointing simultaneously. Furthermore we will explore possibility of an on-line
control scheme based on Bayesian learning.

References

1. Adams, E.: Optimizing preventive service of the software products. IBM Journal
of Research & Development 28, 2–14 (1984)

2. Avritzer, A., Weyuker, E.J.: Monitoring smoothly degrading systems for increased
dependability. Empirical Software Engineering 2, 59–77 (1997)

3. Baccelli, F.: Analysis of s service facility with periodic checkpointing. Acta Infor-
matica 15, 67–81 (1981)

4. Barlow, R., Proschan, F.: Mathematical Theory of Reliability. John Wiley & Sons,
Chichester (1965)

126 H. Okamura and T. Dohi

5. Bellman, R.E.: Dynamic Programming. Princeton University Press, Princeton
(1957)

6. Bobbio, A., Garg, S., Gribaudo, M., Horvath, A., Sereno, M., Telek, M.: Modeling
software systems with rejuvenation, restoration and checkpointing through fluid
stochastic Petri nets. In: Proceedings of International Workshop on Petri Nets
and Performance Models (PNPM 1999), pp. 82–91. IEEE CS Press, Los Alamitos
(1999)

7. Bobbio, A., Sereno, M., Anglano, C.: Fine grained software degradation models for
optimal rejuvenation policies. Performance Evaluation 46, 45–62 (2001)

8. Bao, Y., Sun, X., Trivedi, K.S.: A workload-based analysis of software aging, and
rejuvenation. IEEE Transactions on Reliability 54(3), 541–548 (2005)

9. Castelli, V., Harper, R.E., Heidelberger, P., Hunter, S.W., Trivedi, K.S.,
Vaidyanathan, K., Zeggert, W.P.: Proactive management of software aging. IBM
J. Research & Development 45, 311–332 (2001)

10. Chandy, K.M.: A survey of analytic models of roll-back and recovery strategies.
Computer 8(5), 40–47 (1975)

11. Chandy, K.M., Browne, J.C., Dissly, C.W., Uhrig, W.R.: Analytic models for roll-
back and recovery strategies in database systems. IEEE Transactions on Software
Engineering SE-1(1), 100–110 (1975)

12. Dohi, T., Kaio, N., Osaki, S.: The optimal age-dependent checkpoint strategy for a
stochastic system subject to general failure mode. Journal of Mathematical Anal-
ysis and Applications 249, 80–94 (2000)

13. Dohi, T., Goseva-Popstojanova, K., Trivedi, K.S.: Estimating software rejuvenation
schedule in high assurance systems. The Computer Journal 44(6), 473–485 (2001)

14. Dohi, T., Kaio, N., Trivedi, K.S.: Availability models with age dependent-
checkpointing. In: Proceedings of 21st Symposium on Reliable Distributed Systems
(SRDS 2002), pp. 130–139. IEEE CS Press, Los Alamitos (2002)

15. Dohi, T., Suzuki, H., Trivedi, K.S.: Comparing software rejuvenation policies under
different dependability measures. IEICE Transactions on Information and Systems
(D) E87-D(8), 2078–2085 (2004)

16. Dohi, T., Ozaki, T., Kaio, N.: Optimal sequential checkpoint placement with equal-
ity constraints. In: Proceedings of The 2nd IEEE International Symposium on De-
pendable Autonomic and Secure Computing (DASC 2006), pp. 77–84. IEEE CS
Press, Los Alamitos (2006)

17. Eto, H., Dohi, T.: Analysis of a service degradation model with preventive re-
juvenation. In: Penkler, D., Reitenspiess, M., Tam, F. (eds.) ISAS 2006. LNCS,
vol. 4328, pp. 17–29. Springer, Heidelberg (2006)

18. Fukumoto, S., Kaio, N., Osaki, S.: A study of checkpoint generations for a database
recovery mechanism. Computers Math. Applic. 24, 63–70 (1992)

19. Fukumoto, S., Kaio, N., Osaki, S.: Optimal checkpointing strategies using the
checkpointing density. Journal of Information Processing 15, 87–92 (1992)

20. Garg, S., Telek, M., Puliafito, A., Trivedi, K.S.: Analysis of software rejuvenation
using Markov regenerative stochastic Petri net. In: Proceedings of 6th International
Symposium on Software Reliability Engineering (ISSRE 1995), pp. 24–27. IEEE
CS Press, Los Alamitos (1995)

21. Garg, S., Huang, Y., Kintala, C., Trivedi, K.S.: Minimizing completion time of a
program by checkpointing and rejuvenation. In: Proceedings of 1996 ACM SIG-
METRICS Conference, pp. 252–261. ACM Press, New York (1996)

22. Garg, S., Pfening, S., Puliafito, A., Telek, M., Trivedi, K.S.: Analysis of preven-
tive maintenance in transactions based software systems. IEEE Transactions on
Computers 47, 96–107 (1998)

Analysis of a Software System 127

23. Gottfried, B.S.: A stopping criterion for the golden-ratio search. Operations Re-
search 23, 553–555 (1975)

24. Huang, Y., Kintala, C., Kolettin, N., Funton, N.D.: Software rejuvenation: anal-
ysis, module and applications. In: Proceedings 25th International Symposium on
Fault Tolerant Computing (FTC 1995), pp. 381–390. IEEE CS Press, Los Alamitos
(1995)

25. Gelenbe, E., Derochette, D.: Performance of rollback recovery systems under in-
termittent failures. Communications of the ACM 21(6), 493–499 (1978)

26. Gelenbe, E.: On the optimum checkpoint interval. Journal of the ACM 26(2), 259–
270 (1979)

27. Gelenbe, E.E., Hernandez, M.: Optimum checkpoints with age dependent failures.
Acta Informatica 27, 519–531 (1990)

28. Goes, P.B., Sumita, U.: Stochastic models for performance analysis of database
recovery control. IEEE Transactions on Computers C-44(4), 561–576 (1995)

29. Goes, P.B.: A stochastic model for performance evaluation of main memory resident
database systems. ORSA Journal of Computing 7(3), 269–282 (1997)

30. Grassi, V., Donatiello, L., Tucci, S.: On the optimal checkpointing of critical tasks
and transaction-oriented systems. IEEE Transactions on Software Engineering SE-
18(1), 72–77 (1992)

31. Kulkarni, V.G., Nicola, V.F., Trivedi, K.S.: Effects of checkpointing and queueing
on program performance. Stochastic Models 6(4), 615–648 (1990)

32. L’Ecuyer, P., Malenfant, J.: Computing optimal checkpointing strategies for roll-
back and recovery systems. IEEE Transactions on Computers C-37(4), 491–496
(1988)

33. Ling, Y., Mi, J., Lin, X.: A variational calculus approach to optimal checkpoint
placement. IEEE Transactions on Computers 50(7), 699–707 (2001)

34. Nicola, V.F., Van Spanje, J.M.: Comparative analysis of different models of check-
pointing and recovery. IEEE Transactions on Software Engineering SE-16(8), 807–
821 (1990)

35. Nicola, V.F.: Checkpointing and modeling of program execution time. In: Lyu,
M.R. (ed.) Software Fault Tolerance, pp. 167–188. John Wiley & Sons, Chichester
(1995)

36. Okamura, H., Miyahara, S., Dohi, T.: Dependability analysis of a client/server soft-
ware systems with rejuvenation. In: Proceedings of 13th International Symposium
on Software Reliability Engineering (ISSRE 2002), pp. 171–180. IEEE CS Press,
Los Alamitos (2002)

37. Okamura, H., Miyahara, S., Dohi, T.: Dependability analysis of a transaction-
based multi server system with rejuvenation. IEICE Transactions on Fundamentals
of Electronics, Communications and Computer Sciences (A) E86-A(8), 2081–2090
(2003)

38. Okamura, H., Fujio, H., Dohi, T.: Fine-grained shock models to rejuvenate software
systems. IEICE Transactions on Information and Systems (D) E86-D(10), 2165–
2171 (2003)

39. Okamura, H., Nishimura, Y., Dohi, T.: A dynamic checkpointing scheme based on
reinforcement learning. In: Proceedings of The 10th International Symposium on
Pacific Rim Dependable Computing (PRDC 2004), pp. 151–158. IEEE CS Press,
Los Alamitos (2004)

40. Okamura, H., Miyahara, S., Dohi, T.: Rejuvenating communication network system
with burst arrival. IEICE Transactions on Communications (B) E88-B(12), 4498–
4506 (2005)

128 H. Okamura and T. Dohi

41. Okamura, H., Iwamoto, K., Dohi, T.: A dynamic programming algorithm for soft-
ware rejuvenation scheduling under distributed computation circumstance. In: Pro-
ceedings of IEEE 11th International Conference on Parallel and Distributed Sys-
tems (ICPDS 2005), vol. II, pp. 493–497. IEEE CS Press, Los Alamitos (2005)

42. Okamura, H., Iwamoto, K., Dohi, T.: A DP-based optimal checkpointing algorithm
for real-time appications. International Journal of Reliability, Quality and Safety
Engineering 13(4), 323–340 (2006)

43. Ozaki, T., Dohi, T., Okamura, H., Kaio, N.: Distribution-free checkpoint placement
algorithms based on min-max principle. IEEE Transactions on Dependable and
Secure Computing 3(2), 130–140 (2006)

44. Pfening, S., Garg, S., Puliafito, A., Telek, M., Trivedi, K.S.: Optimal rejuvenation
for tolerating soft failure. Performance Evaluation 27/28(4), 491–506 (1996)

45. Puterman, M.: Markov Decision Processes. John Wiley & Sons, New York (1994)
46. Reinecke, P., van Moorsel, A.P., Wolter, K.: A measurement study of the interplay

between application level restart and transport protocol. In: Malek, M., Reiten-
spiess, M., Kaiser, J. (eds.) ISAS 2004. LNCS, vol. 3335, pp. 86–100. Springer,
Heidelberg (2005)

47. Rinsaka, K., Dohi, T.: Behavioral analysis of fault-torellant software systems with
rejuvenation. IEICE Transactions on Information and Systems (D) E88-D(12),
2681–2690 (2005)

48. Rinsaka, K., Dohi, T.: A faster estimation algorithm for periodic preventive rejuve-
nation schedule maximizing system availability. In: Malek, M., Reitenspieß, M., van
Moorsel, A. (eds.) ISAS 2007. LNCS, vol. 4526, pp. 94–104. Springer, Heidelberg
(2007)

49. Tai, A.T., Alkalai, L., Chau, S.N.: On-board preventive maintenance: a design-
oriented analytic study for long-life applications. Performance Evaluation 35(3/4),
215–232 (1999)

50. Toueg, S., Babaog̃lu, Ö.: On the optimum checkpoint selection problem. SIAM
Journal of Computing 13(3), 630–649 (1984)

51. Vaidyanathan, K.V., Harper, R.E., Hunter, S.W., Trivedi, K.S.: Analysis of soft-
ware rejuvenation in cluster systems. In: Proceedings of ACM SIGMETRICS
2001/Performance 2001, pp. 62–71. ACM Press, New York (2001)

52. Vaidyanathan, K.V., Trivedi, K.S.: A comprehensive model for software rejuve-
nation. IEEE Transactions on Dependable and Secure Computing 2(2), 124–137
(2005)

53. Vaidya, N.H.: Impact of checkpoint latency on overhead ratio of a checkpointing
scheme. IEEE Transactions on Computers C-46(8), 942–947 (1997)

54. van Moorsel, A.P., Wolter, K.: Optimal restart times for moments of completion
time. IEE Proceedings of Software 151(5), 219–223 (2004)

55. van Moorsel, A.P., Wolter, K.: Analysis of restart mechanisms in software systems.
IEEE Transactions on Software Engineering 32(8), 547–558 (2006)

56. Wang, D., Xie, W., Trivedi, K.S.: Performability analysis of clustered systems with
rejuvenation under varying workload. Performance Evaluation (in press)

57. Ziv, A., Bruck, J.: An on-line algorithm for checkpoint placement. IEEE Transac-
tions on Computers C-46(9), 976–985 (1997)

58. Young, J.W.: A first order approximation to the optimum checkpoint interval.
Communications of the ACM 17(9), 530–531 (1974)

A Platform for Cooperative Server Backups

Based on Virtual Machines

Akiyoshi Sugiki1, Kei Yamatozaki2, Richard Potter1, and Kazuhiko Kato2,1

1 CREST, Japan Science and Technology Agency
2 Department of Computer Science, University of Tsukuba

1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573 Japan
{sugiki,k-yamatozaki,potter}@osss.cs.tsukuba.ac.jp,

kato@cs.tsukuba.ac.jp

Abstract. We present a virtual machine-based peer-to-peer platform
that allows many Internet services to back up their services cooper-
atively. The goal of our platform is to provide a highly-available and
service-independent solution that is cost-effective for smaller, indepen-
dent service providers. Use of virtual machines makes it possible to encap-
sulate the complete service state and to share physical hosts. A multicast
protocol guarantees that service state is replicated reliably on multiple
physical hosts so that in case of failures, recent state can be recovered. We
implemented a prototype and evaluated it by experiments to show that
our design can adapt to dynamic host changes and evaluate the runtime
and failure recovery performance possible with Xen and SBUML virtual
machines.

Keywords: middleware, virtual machines, Internet services, passive
replication, peer-to-peer.

1 Introduction

Service availability is a crucial requirement for the growing number of Inter-
net services. A traditional fault-tolerance or disaster-recovery solution for high
availability is to replicate service state on multiple physical hosts in different
locations. This technique is reliable and widely deployed. However, existing im-
plementations are too expensive for small Internet services that are typically
hosted on a single physical computer. These small services are prevalent because
of the long-tail of the Internet and the large number of small startup companies,
non profit organizations and schools have their own web sites and mail servers.
In universities or companies, they also have many individual servers in their de-
partments. They can not afford to purchase the multiple servers for necessary
for traditional service availability techniques, so their availability is very limited.
Even if they do use multiple physical hosts, most of the computing resources are
unused resulting in costly inefficiency.

In this paper, we present a virtual machine-based peer-to-peer platform that
allows many Internet services to back up their services cooperatively. By con-
structing a cooperative platform on top of individual physical hosts, we provide

T. Nanya et al. (Eds.): ISAS 2008, LNCS 5017, pp. 129–141, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

130 A. Sugiki et al.

a highly-available and cost-effective solution especially for small, independent
service providers.

Virtual machines help the platform be reliable by allowing the service state to
be checkpointed and migrated to another host. The service state can be complete,
including everything from the operating system (OS) to the service software.
Virtual machines make this possible without requiring any special modifications
to the service code. In addition, virtual machines provide isolation, so that when
multiple services share the same physical host, problems in one service will not
cause failures in other services.

Our approach is based on passive replication of the virtual machine state to
backup hosts in order to provide a service-independent solution. A reliable de-
livery protocol guarantees that the virtual machine checkpointed service state is
replicated reliably on multiple hosts. In case of failures, a consistent virtual ma-
chine image can be resumed on a backup, which takes over providing the service.
Dynamic backup host additions and departures are managed by a membership
protocol in a decentralized manner.

The main contribution of this paper is that we show the use of virtualization
for a such cooperative platform is one promising way to achieve highly-available
Internet services cost-effectively. We implemented a prototype and evaluated it
by the experiments. We currently support two hypervisors: Xen [1] and Scrap
Book for User-Mode Linux (SBUML) [2,3]. Experimental results show that our
mechanism can adapt to dynamic host configurations and successfully recover
from failures.

The rest of this paper is organized as follows. Section 2 describes the overview
of our platform. Section 3 explains the basic system architecture. Section 4 shows
our implementation and the results of the experiments. Section 5 presents related
work. Finally, we conclude the paper in Section 6.

2 Cooperative Platform for Service Backups

Figure 1 shows the overview of our platform. The platform runs on the top of
separate physical hosts which are used to host their own services independently.
Because our ultimate goal is to provide disaster-recovery by cooperation in WAN
environments, we cannot assume shared disks exist as is required by HA clusters
like VMware HA [4] and Bressoud and Schneider’s research [5] on HP PA-RISC.
We also assume fault-tolerance in LAN environments by sharing department
servers in companies or universities. The overall architecture is designed and
implemented to be modular so that it can work with various virtual machines.

Service providers do not have to prepare multiple physical hosts for high
availability or modify their service. They only have to install their service inside
a virtual machine. By using replication, the platform provides highly available
Internet services. Services are replicated on multiple hosts and the clients interact
with a single instance of them. If a failure occurs, one of the other hosts continues
to provide that service. By sharing the individual machines of many service
providers, the platform can achieve it cost-effectively. When a backup server is

A Platform for Cooperative Server Backups Based on Virtual Machines 131

Fig. 1. Virtual machine-based cooperative platform

required, virtualization allows multiple servers to run on the same host without
interference.

Virtual machines increase reliability on such platform by the following
advantages:

– Service transparency: Virtual machines can transparently capture service
state by checkpointing and replicate it to different locations. No delicate or
tailored modification of service software is required.

– Completeness: Virtual machines encapsulate the complete service state,
including service software, libraries, and OS. In contrast, traditional fault-
tolerant systems are implemented as libraries and limit encapsulated state
to only the service software.

– Isolation: Virtual machines provide the similar level of security to physical
hosts. Even if one virtual machine is down, the other virtual machines on
the same host can continue their processes. Some virtual machines like Xen
also provide performance-isolation mechanism.

– Resource efficiency: Multiple virtual machines can run simultaneously
on the same host. Because recent PC servers have ample disk space, a large
number of virtual machine checkpoints from another physical hosts can be
saved.

– Recovery from hot-state: In most traditional fault-tolerant systems, a
service must read the disk state from storage and reboot the service soft-
ware to recover from failures. In contrast, virtual machines encapsulate the
running state.

The use of virtual machines is attractive, especially for the many new Internet
services that are developed with extreme time and cost constraints. Thus, we
propose virtual machine-based platform to provide a service-transparent and
reliable solution.

132 A. Sugiki et al.

Hypervisor

G
ue

st
 1

G
ue

st
 2

Reliable Multicast

Lib
Host OS

Lib Lib
OS OS

Membership
Service Placement

Platform Core

Hypervisor

G
ue

st
 1

G
ue

st
 2

Reliable Multicast

Lib
Host OS

Lib Lib
OS OS

Membership
Service Placement

Platform Core

Hypervisor

G
ue

st
 1

G
ue

st
 2

Reliable Multicast

Lib
Host OS

Lib Lib
OS OS

Membership
Service Placement

Platform Core

Replicated on multiple hosts

Clients
directly interact with guests

Fig. 2. Cooperative Server Backup Architecture

3 System Architecture

Although virtual machines simplify many problems, coordination between the
cooperating hosts raises many issues. In this paper, we especially deal with the
core architecture for the cooperative platform. This paper addresses physical
host management, reliable replication of virtual machines, and virtual machine
placement problems. Other problems like guest address resolutions are beyond
the scope of this paper and remain for future work.

Figure 2 shows the basic system architecture. We assume a hypervisor is
running inside each host. A service is encapsulated by a virtual machine, which
has the service software, libraries, and OS required for the service. The clients
directly interact with the server programs inside the virtual machines so that
they do not have to be aware that the service is running inside the virtual
machine and on the top of our platform.

In the current design, we simply trust all hosts. The core software runs inside
host OS. Alternatively, we can run it in a separated and dedicated guest OS.
The core software of the platform consists of several components. The main ones
are:

– Reliable multicast: The reliable multicast component provides reliable
replication of the virtual machine states. It guarantees the replicated virtual
machine states to be consistent.

– Service placement: This component determines the actual placement and
number of primary and backup virtual machines.

– Membership: This component manages all physical hosts. Every time a
host joins or departs, this component reacts. It also provides failure detection
mechanism.

The following sections describe each of the components in more detail: Section
3.1 describes the reliable multicast component, Section 3.2 explains the virtual
machine placement component, and the membership component is shown in
Section 3.3.

A Platform for Cooperative Server Backups Based on Virtual Machines 133

Table 1. Comparison of active and passive standby

Replication Service CPU Network Incremental
method assumption cost cost recovery trails

Active standby Request replication Deterministic × √ ×
Passive standby Checkpoint replication —

√ × √

3.1 Reliable Replication of Virtual Machines

Design choices. State replication approach is commonly used for highly avail-
able services. In this approach, a service is replicated on multiple hosts and their
hosts continuously transition to the same state in same order. Two major classes
of techniques ensure the consistency (Table 1) :

– Active Standby: In this approach, every host processes the requests from
the clients and transitions independently. This technique is useful since repli-
cating requests incurs a smaller network cost than replicating the check-
points. However, it has two important drawbacks: (1) this approach implies
high computational resource usage, and more importantly (2) the requests
have to be processed in a deterministic manner. Generally, a service may re-
sult in different states by reorder of interrupts, timer, scheduling and others.

– Passive Standby: With the passive standby, one of the hosts called the pri-
mary plays a special role: it receives the requests from the clients and replies
responses. The backup hosts periodically receive state update messages from
the primary. This technique is attractive since it requires less computational
resource usage than active standby and makes no assumption on determin-
ism for processing requests.

Our virtual machine-based state replication is based on passive standby, be-
cause our goal is a service-independent solution, which cannot expect the service
to run deterministically. Also, most hypervisors support checkpoint mechanisms
that can easily encapsulate the complete service state. Although their virtual
machine checkpoints are large, coarse grained, and must be handled as a black-
box, they are widely available. Furthermore, if one of the backup hosts cannot
recover from the recent checkpoint, it can retry the recovery process from an
accumulated history of checkpoints. This cannot implemented by active standby
approach.

Approach. A Paxos [6,7]-based reliable multicast protocol is used to reliably
achieve passive standby. Paxos guarantees the safety properties and can run
asynchronously avoiding performance degradation caused by slow down or tem-
poral unavailability of backup hosts.

Our protocol is based on Mazières’ hand out [8], which we slightly optimized
for virtual machine replication. We collapsed the three roles in the protocol into
two roles: primary host and backup hosts, and use the following sequence for
replication: (1) the primary takes an incremental checkpoint and propagates it

134 A. Sugiki et al.

Primary Host
(runs service VM)

(1) Take an incremental
 checkpoint of service VM

(2) Received the checkpoint
 and logged on the backup hosts

(3) Reply

(4) Merge checkpoints
 to create the full checkpoint

Replication
done

Backup Host 1

Backup Host 2

(1’) Start the next round

(2’) Merge the primary commited checkpoints

Fig. 3. Virtual machine replication process

to the backup hosts. Because the base virtual machine is assumed to have been
already transferred, only smaller checkpoints are transmitted in this step. Next,
(2) the backup hosts receive the checkpoint and immediately write it to their
logs. Then, (3) the backup hosts reply acknowledgments to the primary. (4) Once
the primary receives acknowledgments from the majority, the primary commits
the incremental checkpoint by merging it into the full checkpoint to save disk
space. In the next round, the primary piggybacks the recent committed position
of checkpoints on the first message and the backup hosts do the same merge
operation. By this overlap, the checkpoints are replicated efficiently. Failures in
the intermediate steps force the reconfiguration protocol described in [8] to run
for recovery. Even if some backup hosts slow down or are temporarily unavailable
in the normal operations, they can catch up to the recent state safely by using the
reconfiguration protocol. Only a single configuration is selected even if multiple
hosts request reconfiguration simultaneously. If a hypervisor does not support
incremental checkpoints like Xen, we use full checkpoints instead.

The current design is constructed based on several assumptions. First, we
assume an asynchronous system with failure detectors. We also assume only
fail-stop failures of host OSes and hardware and assume network channels are
reliable. But, this model can be extended by variants of state replication ap-
proaches like [9] because this limitation comes from the use of the basic Paxos
algorithm. In contrast, a guest OS is not limited to fail-stop failures if it can be
detected by a failure detector. Second, to survive F host failures, the replication
mechanism requires 2F + 1 hosts. This assumption can be loosen by the Paxos
variants like [10]. Even in the current system, service providers can dynamically
change the number of replicated hosts by running a reconfiguration protocol.
Finally, we assume general Internet connections instead of leased lines and our
protocol design was made based on this assumption. From the clients’ perspec-
tive our protocol replicate services state without lock-step and all the replicated
state is either up-to-date or still unchanged from the previous state. Because
there is an obvious trade-off between the service performance and the up-to-
dateness of the replicated state, we give a priority to replicated virtual machine

A Platform for Cooperative Server Backups Based on Virtual Machines 135

A

B

C

D

E

F

G

H

Service 1 is replicated
on hosts {B, C, D}

(Host C is the primary)

Service 2 is replicated
on hosts {C, D, E}

(Host D is the primary)

A

B

C

D

E

F

G

H

Service 1 adds Host A

Service 2 addes Host F

Host C is failed

(a) Before the failure of Host C (b) After the failure of Host C

Fig. 4. Example of dynamic host configuration

state to be consistent rather than up-to-date. We have a plan to throttle the
checkpoint interval based on observations of the service performance.

3.2 Service Placement

Currently, the platform supports a Chord [11]-like service placement policy (Fig-
ure 4). We use SHA-1 hash to generate a 160-bit identifier which is used to de-
termine which hosts are responsible for that service. We call the key for a host a
host key and that for a service a service key. All hosts know the keys because they
are piggybacked on membership messages. All participating hosts are mapped
onto the single ring according to the keys and closest host to the service key
becomes the primary host for that service. The backup hosts are selected from
the neighbors at both sides. The number of backup hosts can be changed by
specifying in the service configuration file. In the event of host departure, closest
host takes over the responsibility.

Figure 4 depicts an example of dynamic configuration change. Initially,
Service 1 is provided by hosts {B, C, D} and Service 2 is hosted by hosts {C, D,
E}. Hosts C and D are the primary hosts respectively. Once the host C has failed,
the configuration for Service 1 is changed to {A, B, D} and that for Service 2 is
changed to {D, E, F}. At this time, closest host for each service is selected.

Each service provider wishes to provide its service at the initial host if possible
until the failure occurs. Therefore, we use the host key of the initial host as the
service key in the current implementation. By this technique, the initial hosts
can provide their own services until the failures occur. If an initial host recovers
from the failure, it can become the primary again.

Because our platform operates cooperatively, there is no centralized manage-
ment of service placement. Service placement must be calculated by the indi-
vidual hosts. But, if multiple hosts calculate simultaneously the placement for
the same service, results may be inconsistent. Therefore, we adopt the strategy
that the primary host for each service is responsible for the placement. When a
host becomes the primary, the service placement component is activated and it
calculates the placement of the service. Those of the other hosts are deactivated.

136 A. Sugiki et al.

If the primary host fails, multiple backup hosts are activated at the same time
and compete in an election. Once one of the previous backup hosts wins the
election, the other components are deactivated.

3.3 Membership

All participating hosts are managed by a membership protocol. Hosts are auto-
matically added to the candidate view and removed from it in the case of fail-
ures. The candidate view can be seen by all the participants. Each service can
choose replica hosts from the candidate view. The platform currently adopts
a gossip-based failure detection service [12] for the membership management,
which provides scalable and robust management by each participant periodi-
cally propagating the list of known hosts to another randomly selected host. We
also combines TCP connection monitoring for faster failure detection.

When a host joins and leaves, the membership protocol automatically notifies
the event to the server placement component, and the service placement reacts
accordingly.

4 Experiments

We implemented a prototype as a part of Sustainable Service Framework [13]
that we have been developing. To optimize the productivity, it was implemented
in Java and consists of 19,260 lines of code. Although it was implemented in
Java, we did many optimizations to maximize the performance. The internal
structure is split into multiple stages similar to the SEDA architecture [14] and
requests are processed by an event-driven design. While ordinary messages are
passed by Java’s serialization mechanism, large file transfers like virtual machine
checkpoints are sent by the Java nio’s sendfile mechanism. Although they are
mixed, FIFO order is preserved.

The type of virtual machines used can integrated into the system with small
code additions. We currently support two virtual machines: Xen and ScrapBook
for User-Mode Linux [2,3]. Xen is a well known open-source hypervisor and
SBUML is a descendant of User-Mode Linux which supports checkpoint mech-
anism the original does not support. The performance of Xen is relatively good
but it requires a Xen supported host and guest kernels. In contrast, SBUML
can run with many Linux distributions with no host kernel modification but
the performance is limited due to the user-level implementation. Furthermore,
SBUML supports incremental checkpoint mechanism while Xen only supports
full checkpoints.

In this paper, we conducted three types of experiments to verify our method
applicability: measuring the overhead of Java-implemented replication mecha-
nism, the virtual machine bare checkpointing time, and observing the behavior
of dynamic host changes. Although we plan to use our mechanism in WAN en-
vironments, we conducted all experiments using a LAN to understand the bare
replication overheads and performance.

A Platform for Cooperative Server Backups Based on Virtual Machines 137

Table 2. Service performance overheads incurred by virtual machines

Benchmark Native [MB/s] SBUML [MB/s] Xen [MB/s]

dbench 421.48 14.85 (3.5%) 257.71 (61.1%)
tbench 83.42 8.69 (10.4%) 67.03 (80.3%)

() shows the ratio to the native performance.

Table 3. Checkpointing overheads

SBUML Xen

Checkpoint size [MB] 126.1 268.7

Checkpoint time [sec] 4.37 8.45
Recovery time [sec] 3.70 8.08

4.1 Experimental Setup

All experiments were conducted on 5 identical PC servers. Each was equipped
with Dual Xeon 3.60GHz CPUs, 2GB memory, and a single 36GB SCSI disk.
Each was connected to a single switch via 1000Base-T network adapter. Fedora 8
(Linux 2.6.21-xen or 2.6.23) was used for host OS and guest OS of Xen. Guest OS
of SBUML was CentOS 3.9 (Linux 2.4.24-1um-1sb). Sun JDK 1.6.0 was used for
Java and guest domains were assigned 256MB memory during all experiments.

4.2 Replication Overheads

To understand the overhead of our Java-implemented reliable multicast, we mea-
sured the replication performance without virtual machines. We first show the
elapsed time for replicating null requests on three physical hosts. Although the
messages were replicated, replicated hosts did not involve any request process-
ing. We conducted 10,000 measurements and each replication only took 2.78 ms
on an average. This results was similar to a simple key/value service results (2.98
ms) that was implemented in C [15], so the overhead of implementing in Java
was sufficiently small. In contrast, the average time of constructing the first view
was 69.79 ms. This time was slightly longer than that of Paxos normal operations
due to more complex message exchanges.

4.3 Virtual Machine Overheads

In the next experiment, we measured service performance overhead incurred
by virtual machines. Table 2 shows the results in both SBUML and Xen. We
used the dbench and tbench commands included by dbench [16] suite for this
benchmark. dbench generates disk I/O part of an emulated samba workload and
tbench generates only TCP connection part of that workload.

From Table 2, the throughput of SBUML was much lower than the native
performance. The throughputs of dbench and tbenchwere 3.5% and 10.4% of the

138 A. Sugiki et al.

0

0.5

1

1.5

2

2.5

3

3.5

4

0 30 60 90 120 150 180 210 240 270 300

C
P
U
 l
o
a
d

a
v
e
r
a
g
e

Elapsed time [sec]

Host Guest 1

0

0.5

1

1.5

2

2.5

3

3.5

4

0 30 60 90 120 150 180 210 240 270 300

C
P
U
 l
o
a
d

a
v
e
r
a
g
e

Elapsed time [sec]

Host Guest 1

(a) Host A (b) Host B

0

0.5

1

1.5

2

2.5

3

3.5

4

0 30 60 90 120 150 180 210 240 270 300

C
P
U
 l
o
a
d

a
v
e
r
a
g
e

Elapsed time [sec]

Host Guest 2

0

0.5

1

1.5

2

2.5

3

3.5

4

0 30 60 90 120 150 180 210 240 270 300

C
P
U
 l
o
a
d

a
v
e
r
a
g
e

Elapsed time [sec]

Host Guest 2

(c) Host C (d) Host D

Fig. 5. Handling dynamic changes

native performance respectively. This was due to the poor I/O implementation of
User-mode Linux and the original User-mode Linux has the same problem. The
performance of Xen was relatively good it is a more tolerable degradation. These
throughputs were 61.1% and 80.3% of the native throughput. The performance
comparison of Xen and User-mode Linux was also shown in Xen’s paper [1].

Next, we measured the overhead of virtual machine checkpointing. Table 3
shows checkpoint overheads for dbench workload. Table 3 shows the average
checkpoint size, average time for taking checkpoints, and average time to recover
from the checkpoints for each virtual machine. SBUML was relatively fast and
its checkpoint size was smaller than that of Xen. The size and time were 46.9%
and 51.7% of those of Xen respectively.

4.4 Handling Changes

This subsection studies how our platform recovers from system failures. In this
benchmark, we used Xen as a hypervisor. We started four hosts and ran two ser-
vices, Service 1 and 2, which consume much CPU time. During the benchmark,
we artificially injected failures by killing processes.

Figure 5 shows the CPU load average transitions of all hosts. We observed
the transitions for 320 seconds. Initially, Service 1 and 2 were running on Host
A and D respectively. These services were replicated on the hosts {A, B, C} and
{B, C, D} and replication was periodically done at 30 seconds interval. During

A Platform for Cooperative Server Backups Based on Virtual Machines 139

0

100

200

300

400

500

600

0 15 30 45 60 75 90 105 120 135 150 165 180 195 210
T
h
r
o
u
g
h
p
u
t
 [
p
a
c
k
e
t
s
/
s
e
c
]

Elapsed time [sec]

Recovery time

Fig. 6. Handling failures (client perspective)

checkpointing, the load average of guest OSes are degraded because Xen must
suspend the guest OSes during checkpointing. The load average of host OSes in
Host A and D increased immediately after the finish of checkpointing due to the
replication process.

After 100 seconds, Host A was caused to failed. Our platform immediately
detected the failure and it caused a reconfiguration protocol to run. Host B
took over for Host A. Host A rejoined to the platform at 180 seconds. After
240 seconds, a failure was introduced to Host D. This caused a reconfiguration
protocol to run again and Host C was used for take-over.

Figure 6 shows the configuration changes from a client’s view in another
experiment. We ran four hosts with a single service and the client continu-
ously sends UDP ping messages to the server inside the Xen virtual machine.
Figure 6 shows these throughput of the messages over time. The throughput was
periodically degraded for about 8 seconds due to checkpointing. A failure was
artificially introduced at 108 seconds, and our reconfiguration was immediately
ran. After 123 seconds, the throughput recovered. From clients’ perspective, it
can be seen as a single server were continuously providing service.

5 Related Work

Several recent research projects have been investigating virtual machine-based
fault-tolerant or disaster-recovery systems, but our goal is different from these ef-
forts. Our goal is to construct a general cooperative platform for fault-tolerance
rather that can be used with various virtualmachine implementations. These other
projects develop techniques aimed at specific virtual machine implementations.

Second Site [17,18] aims for the disaster protection of the common server.
Although their goal is ambitious, only a single position paper and talk slides
have been revealed at this time. They are based on the modification of Xen’s
live migration and frequently replicate the event level checkpoints of virtual
machines. But, the details of replication protocol is unknown and their goal is
different from our goal of constructing a cooperative platform. VM-FIT [19] uses
active standby of virtual machines for fault tolerant systems. Stodden [20] studies
semi-active standby of Xen for fault-tolerance. All these researches are studying
techniques specific to particular virtual machines rather than constructing the
cooperative platform.

140 A. Sugiki et al.

The state machine replication approach is not a new idea and has been investi-
gated for many years [21]. However, only recently has virtualization been widely
available. The strong encapsulation and migration functionality opens more pos-
sibilities for highly-available and service-independent solutions. Although we cur-
rently use a Paxos-based replication protocol, our system can be improved by
recent advancement in replication protocols like [22].

Cooperative platforms have been investigated especially in storage systems
[23], proxies [24], and the other peer-to-peer systems. Our approach is a first step
toward a virtual machine based cooperative platform to achieve highly available
Internet services cost-effectively.

6 Conclusions and Future Work

We presented a platform that allows Internet service providers to cooperatively
replicating service state among their host servers. It provides highly-available
and cost-effective solution especially for small Internet services. Our approach
is based on virtual machines to capture the complete service state and make it
possible to safely share physical hosts. A Paxos-based reliable multicast guar-
antees that service state is reliably replicated on multiple hosts, which allows
automatic recovery from recently committed state in the case of failures. We
implemented a prototype and evaluated it by the experiments. Our results show
that our prototype can adapt to dynamic host changes and successfully recover
from failures.

In future work, we will further investigate to make our platform more reliable
and practical. First, we will address a quantitative study in WAN environments.
To this goal, a guest address hand-over mechanism in WAN is required. Sec-
ond, we will implement a faster checkpoint mechanism for the virtual machines.
Third, by incorporating a request logging mechanism between a server and the
clients, we will achieve zero-loss recovery. Finally, we will investigate dynamic
reconfiguration based on host resource usage.

Acknowledgements. This research was partially supported by Core Research
for Evolutional Science and Technology (CREST) program of Japan Science and
Technology Agency.

References

1. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer,
R., Pratt, I., Warfield, A.: Xen and the art of virtualization. In: ACM SOSP 2003,
pp. 164–177 (2003)

2. Potter, R.: Scrap book for user-mode linux, http://sbuml.sourceforge.net/
3. Potter, R.: One-click distribution of preconfigured Linux runtime state. In:

USENIX VM 2004 WiPs (2004)
4. VMware Inc.: VMware High Availability,

http://www.vmware.com/products/vi/vc/ha.html

http://sbuml.sourceforge.net/
http://www.vmware.com/products/vi/vc/ha.html

A Platform for Cooperative Server Backups Based on Virtual Machines 141

5. Bressoud, T.C., Schneider, F.B.: Hypervisor-based fault tolerance. ACM
TOCS 14(1), 80–107 (1996)

6. Lamport, L.: The part-time parliament. ACM TOCS 16(2), 133–169 (1998)
7. Lamport, L.: Paxos made simple. ACM SIGACT News 32(4), 51–58 (2001)
8. Mazières, D.: Paxos made practical (2007),

http://www.scs.stanford.edu/07wi-cs244b/sched/readings/paxos.pdf
9. Castro, M., Liskov, B.: Practical byzantine fault tolerance. In: USENIX OSDI 1999,

pp. 173–186 (1999)
10. Lamport, L., Massa, M.: Cheap Paxos. In: IEEE/IFIP DSN 2004, pp. 307–314

(2004)
11. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A

scalable peer-to-peer lookup service for Internet applications. In: ACM SIGCOMM
2001, pp. 149–160 (2001)

12. van Renesse, R., Minsky, Y., Hayden, M.: A gossip-style failure detection service.
In: IFIP Middleware 1998, pp. 55–70 (1998)

13. Koiso, T., Abe, H., Ikejima, S., Ishikawa, M., Potter, R., Kato, K.: Design of an
infrastructure toolkit for sustainable service. IPSJ Trans. on Advanced Computing
System 48(SIG3 (ACS 17)) , 13–26 (2007) (in Japanese)

14. Welsh, M., Culler, D., Brewer, E.: SEDA: an architecture for well-conditioned,
scalable Internet services. In: ACM SOSP 2001, pp. 230–243 (2001)

15. Lorch, J.R., Adya, A., Bolosky, W.J., Chaiken, R., Douceur, J.R., Howell, J.: The
SMART way to migrate replicated stateful services. In: ACM EuroSys 2006, pp.
103–115 (2006)

16. Tridgell, A.: dbench, http://samba.org/ftp/triage/dbench/
17. Cully, B., Warfield, A.: Secondsite: Disaster protection for the common server. In:

USENIX HotDep 2006 (2006)
18. Cully, B.: High-speed checkpointing for high availability. In: Xen Summit 5 (2007)
19. Reiser, H.P., Kapitza, R.: Hypervisor-based efficient proactive recovery. In: IEEE

SRDS 2007, pp. 83–92 (2007)
20. Stodden, D.: Semi-active workload replication and live migration with paravirtual

machines. In: Xen Summit, Spring 2007 (2007)
21. Defago, X., Schiper, A., Sergent, N.: Semi-passive replication. In: IEEE SRDS 1998,

pp. 43–50 (1998)
22. Marchetti, C., Baldoni, R., Tucci-Piergiovanni, S., Virgillito, A.: Fully distributed

three-tier active software replication. IEEE TPDS 17(7)(1), 633–645
23. Haeberlen, A., Mislove, A., Druschel, P.: Glacier: highly durable, decentralized

storage despite massive correlated failures. In: USENIX NSDI 2005, pp. 143–158
(2005)

24. Wolman, A., Voelker, M., Sharma, N., Cardwell, N., Karlin, A., Levy, H.M.: On
the scale and performance of cooperative Web proxy caching. In: ACM SOSP 1999,
pp. 16–31 (1999)

http://www.scs.stanford.edu/07wi-cs244b/sched/readings/paxos.pdf
http://samba.org/ftp/triage/dbench/

T. Nanya et al. (Eds.): ISAS 2008, LNCS 5017, pp. 142–154, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Platform Management with SA Forum and Its Role to
Achieve High Availability

Ulrich Kleber1, Frédéric Herrmann2, and Ulrich Horstmann1

1 Nokia Siemens Networks, St.Martin-Str.76, 81541 Munich, Germany
2 Sun Microsystems, Viale Fulvio Testi, 327, 20162 Milano, Italia

Ulrich.Kleber@nsn.com, Frederic.Herrmann@sun.com,
Ulrich.Horstmann@nsn.com

Abstract. With its next release, SA Forum will provide a new platform man-
agement service and so will close the gap between HPI and AIS services. This
new service will match the configured system to the actually present hardware
and will make hardware states easily accessible for software via the information
model. At the same time it extends the information model with objects that rep-
resent operating systems and virtualization layers. The new service provides a
state model for all these objects and APIs to inform its users about changes,
such as operator interactions with the equipment. Administrative commands can
be used for platform maintenance. The complete information model will allow
fault correlation over all platform layers up to the application. This is necessary
for proper fault analysis and to really achieve high availability.

1 Introduction

When talking about high availability of computer systems, we spend much time in
computing the probability of hardware failures; we provide redundancy by allowing a
failed unit to be substituted by another one, and we take large efforts to enable the
software to catch up with tasks started on the failed unit. SA Forum provides stan-
dards to access the hardware (with its Hardware Platform Interface HPI) and stan-
dards for the software to manage redundancy (the Application Interface Specification
AIS). However, currently there is no standardized way to correlate hardware events to
affected software entities. HPI provides a view of the system, based on discovery of
the present hardware, which is identified by its so-called entity path. Any software
having direct hardware dependency needs to perform sophisticated analysis of HPI
events to be able to take appropriate actions. On the other hand, AIS provides very
flexible means for location-transparent execution of software services. Applications
can run in different redundancy schemes on different hardware in a system. Health
monitoring is done independently from hardware events, which is important to cover
hardware and software errors. But when redundancy mechanisms recover the system
from an error - be it with or without service interruption - it is necessary to analyze
the error and isolate it. Faulty hardware should be switched off and replaced; software
errors must be analyzed and corrections provided.

With its next release, SA Forum will provide the first step to standardize platform
management. A new service will be provided to enable AIS middleware and application

 Platform Management with SA Forum and Its Role to Achieve High Availability 143

software to access hardware and low-level software (i.e. operating system and virtual-
ization layers) in a more abstract way. The new service will use the same paradigms as
other AIS services: it will provide an information model to represent hardware and low
level software, states for its objects, and subscriber/callback interfaces in the usual way.

In the following chapters, we will outline the principles behind this new service,
and thus provide an overview of the upcoming specification.

2 System Model

One of the main differences between an HPI view and an AIS view of a system is that
HPI is based on hardware discovery, whereas AIS works on a pre-configured system
model (called the information model in SA Forum terminology). The IMM service
(information model management, part of AIS) provides access to the information
model for all AIS services and for applications. In more detail this means:

− HPI discovers what is there. It reports to its users the present hardware, its types
and capabilities, and also its health. However, it does not provide any assessment
on whether this hardware is really what the system architecture needs to run the
configured software.

− The AIS information model contains the desired system configuration - independ-
ent of the actual existing hardware. So the user can configure applications on non-
existing nodes and do all the necessary maintenance operations like locking, delet-
ing, or creating configured entities - independent of the hardware being present.
This modeling allows the definition of maintenance procedures, like locking a
faulty piece of hardware which had been powered down for fault isolation before it
is replaced.

The configuration element in the current information model that is closest to the
hardware is a cluster node. A cluster node can be configured even when the hard-
ware where it is meant to run does not exist. If the cluster node is administratively
locked while its hardware is inserted, an operator can control its start-up and, if
necessary, perform a complete hardware diagnosis before services are allowed to
run.

So the system configuration as stored in the AIS information model must be matched
to the existing hardware (its type and version) as found by HPI discovery. Software
should only be started if the present hardware type is supported.

2.1 Information Model for Physical Resources

The new platform management service PLM provides objects in the information
model that represent the configured hardware entities. These objects store the neces-
sary data to allow hardware type checking and to indicate the relationship between
hardware entities. As an example, a mezzanine module sitting on a computing blade
or carrier board is represented by an object in a containment tree, the carrier board
being its parent. When the carrier board is physically removed from the system, all
contained entities are affected in the same way as when the mezzanine module is
extracted.

144 U. Kleber, F. Herrmann, and U. Horstmann

S
w

itch

S
w

itch

C
om

pute-B
lade

C
om

pute-B
lade

C
om

pute-B
lade

C
om

pute-B
lade

C
om

pute-B
lade

C
om

pute-B
lade

D
isk

D
isk

A
M

C
IO

A
M

C
IO

A
M

C
IO

A
M

C
IO

ShM ShM
Power Power Power

S
w

itch

S
w

itch

C
om

pute-B
lade

C
om

pute-B
lade

C
om

pute-B
lade

C
om

pute-B
lade

C
om

pute-B
lade

C
om

pute-B
lade

D
isk

D
isk

A
M

C
IO

A
M

C
IO

A
M

C
IO

A
M

C
IO

S
w

itch

S
w

itch

C
om

pute-B
lade

C
om

pute-B
lade

C
om

pute-B
lade

C
om

pute-B
lade

C
om

pute-B
lade

C
om

pute-B
lade

D
isk

D
isk

A
M

C
IO

A
M

C
IO

A
M

C
IO

A
M

C
IO

ShM ShM
Power Power Power

Fig. 1. Example System Configuration

We illustrate this with a small example system. Let’s have one shelf, equipped with
6 computing blades plus two switches. Two of the computing blades have AMC disks
(one each); two other blades have specialized AMC IO modules (two each).

This hardware configuration would be represented in the information model like
this:

Shelf

Switch SwitchCompute
Blade

Compute
Blade

Compute
Blade

Compute
Blade

Compute
Blade

Compute
Blade

Disk Disk AMC-IO AMC-IO AMC-IO AMC-IO

Fan

Power
etc.

...

...

ShM

ShM

Shelf

Switch SwitchCompute
Blade

Compute
Blade

Compute
Blade

Compute
Blade

Compute
Blade

Compute
Blade

Disk Disk AMC-IO AMC-IO AMC-IO AMC-IO

Fan

Power
etc.

...

...

ShM

ShM

Fig. 2. Hardware Information Model of Example System Configuration

The shelf object is parent to all the blades (including switch blades) and also to the
field replaceable units of the infrastructure, like shelf managers, fans, and power entry
modules. Blades in the same way parent the sub-modules, in this case AMC-IO cards
and disks.

This modeling allows PLM to also provide appropriate state management for these
objects. State changes of a blade thus also affect its sub-modules: a disk in this

 Platform Management with SA Forum and Its Role to Achieve High Availability 145

configuration cannot be accessed if its carrier CPU-blade is faulty; all AMC cards get
extracted if their carrier blade is extracted.

PLM provides its users with callbacks to inform them about important hardware
events on the objects they are interested in. An application running on one of the disk-
less blades may store its data on one of those AMC disks in the example configuration.

Assume that the operator wants to exchange the disk blade and opens the latches.
In that case PLM will inform users that are subscribed for this entity that an extraction
request is pending. The application can now safely close all files and do the necessary
replication, before allowing the blade to be extracted. PLM will use HPI hot swap
management to communicate with the hardware. The application could also directly
subscribe for HPI hot swap events, but there may be multiple users of that AMC disk.
So who is going to decide that it is now safe to extract the disk? Now PLM service
will be the owner of the IMM object representing the disk and will also act as an HPI
user that does all the steps in HPI that are necessary for proper hot swap management.

2.2 Information Model for Execution Environments

Additional to this representation of physical resources, PLM introduces objects to
model virtualized architectures, where virtualization facilities (VF, sometimes also
called hypervisor or Virtual Machine Monitor) are able to run multiple operating sys-
tems on virtual machines. For more details on virtualization, see chapter 5.

The PLM information model will represent the containment hierarchy of virtualiza-
tion facilities and virtual machines with so-called execution environment objects.
These objects allow the information model to reflect the dependencies when cluster
nodes run on virtual machines on the same hardware.

Let’s assume we run a virtualized architecture on the blades that do not have AMC
cards. So we have a Virtual Machine Monitor and a number of virtual machines (for
instance, 16 virtual machines) managed by each monitor. This is reflected in the
information model as follows:

Compute
Blade

Virtual Machine Monitor
Execution

Environment

Operating-System
Execution

Environment

Operating-System
Execution

Environment

Operating-System
Execution

Environment
...

Compute
Blade

Virtual Machine Monitor
Execution

Environment

Operating-System
Execution

Environment

Operating-System
Execution

Environment

Operating-System
Execution

Environment
...

Compute
Blade

Virtual Machine Monitor
Execution

Environment

Operating-System
Execution

Environment

Operating-System
Execution

Environment

Operating-System
Execution

Environment
...

Compute
Blade

Virtual Machine Monitor
Execution

Environment

Operating-System
Execution

Environment

Operating-System
Execution

Environment

Operating-System
Execution

Environment
...

Compute
Blade

Virtual Machine Monitor
Execution

Environment

Operating-System
Execution

Environment

Operating-System
Execution

Environment

Operating-System
Execution

Environment
...

Compute
Blade

Virtual Machine Monitor
Execution

Environment

Operating-System
Execution

Environment

Operating-System
Execution

Environment

Operating-System
Execution

Environment
...

Fig. 3. Example Information Model of a Virtualized Architecture

This hierarchy shows directly which environments are affected in case of hardware
events of the CPU blades.

Also the dependencies within this hierarchy need to be considered. Redundancy
configuration in the Availability Management Framework (AMF) should make sure
that active and stand-by roles always get assigned to components running on different
hardware, if possible. Otherwise AMF could assign all services in a protection group

146 U. Kleber, F. Herrmann, and U. Horstmann

to nodes running on virtual machines on the same blade and this protection group
would completely fail in case the blade fails.

2.3 Dependencies

Not all dependencies between PLM objects are reflected in the containment tree.
As a simple example, an operating system often depends on a disk being accessi-

ble. Therefore PLM will introduce additional means to model dependencies between
all types of entities in its information model. Also dependency on groups will be sup-
ported. For instance, a raid system will still be working if one disk fails, but it needs a
minimum of physical disks being available.

2.4 PLM Objects within the Overall AIS Information Model

PLM objects fit into the overall AIS information model in the following way:

HPI-
Entity

Physical
Resource

Execution
Environment

Cluster-
Node

AMF-
Node

Service-
Unit

HPI PLM CLM AMF

HPI-
Entity

Physical
Resource

Execution
Environment

Cluster-
Node

AMF-
Node

Service-
Unit

HPI PLM CLM AMF

Fig. 4. PLM position in information model

The circled arrows show that there may be a hierarchy of physical resource objects.
So CLM (cluster management) nodes are mapped to execution environment objects in
the same way as today AMF maps its entities to CLM nodes.

With PLM objects, the information model can now easily show which AMF compo-
nents are running on which blade. At the same time it allows high flexibility. There may
be execution environments which do not run cluster nodes, but only software entities
that are not aware of the SA Forum middleware. Configuration of services can be done
without knowing whether there is a virtualized architecture on this hardware or not.

By mapping entities of higher level services to the hardware, PLM service closes
the gap between AIS and HPI, and thus a complete view of the system is provided in
the information model.

 Platform Management with SA Forum and Its Role to Achieve High Availability 147

3 Operation Administration and Maintenance

PLM uses its objects in the infomation model to control operation and administration.
It provides administrative commands for these objects and uses the objects to locate
errors and inform users about physical actions of the operator, such as extraction and
insertion of field replaceable units.

The information model directly reflects the physical structure of the hardware.
Since PLM objects are used to control all actions an operator may take maintaining
the system (for instance, extract a piece of hardware), all field replaceable units
should be modeled as PLM objects. The system architect is free to model a finer
granularity, i.e. create objects for hardware entities that are not separately replaceable.
This allows him to separately manage sub-components, if HPI supports the opera-
tions. On the other hand, if the operational rules and procedures do not allow to ex-
change a certain entity, in that case no object is needed to represent that entity in the
information model. PLM then will assume errors of the entity as errors of its parent.

PLM service will inform its users using callbacks if the operator starts physical ac-
tions. In the same way, it will inform users about administrative operations. This is
done using a track interface as it is usual for AIS services.

Some events allow graceful termination of all affected services, but other events do
not allow that. In case of a lock command and also if the latches of an entity are
opened, services can be gracefully terminated. However, this graceful termination
may not be possible in case of hardware faults.

Also if the operator does not wait for the blue LEDs, and extracts the board before
all services are terminated, it is important to inform users about the situation.

4 State Model

Redundancy management in AIS is based on state management. State changes are re-
ported using notifications and state changes trigger actions on dependent entities.
PLM defines states for physical resources and for execution environments.

4.1 States for Physical Resources

For a configured physical resource, the states in the information model reflect whether
the corresponding hardware is present and active. The HPI hot-swap state of the rep-
resented hardware entity is shown, and whether the entity is considered faulty. Addi-
tionally, administrative states are provided for hardware entities, so they can be
locked, if the operator does not wish that they provide service. PLM also provides the
locked-instantiation state, which is known by AMF, and which typically can be
mapped to the power state of the hardware.

4.2 States for Execution Environments

States for execution environments represent the states of software, and thus they will
be very similar to the states used by AMF for its service units and components and
will reflect if the entity is loaded or not. PLM also provides administrative operations
and states, which become very important in virtualized architectures.

148 U. Kleber, F. Herrmann, and U. Horstmann

4.3 Summary State

For all its objects, PLM will provide a summary state, indicating whether an entity is
in service or not. As in AMF, this state is called the readiness state. So the PLM state
model is nothing new for users being familiar with HPI and AMF states. At the same
time it can be mapped to X.731 state management and so allows standardized man-
agement on this level.

The readiness state of an entity is also affected by state changes of entities it de-
pends on. An entity can only be in-service when its parent is in-service.

Usually PLM users are interested in changes of the readiness state. That is, they
need to be informed about a state change of an entity from being in-service to out-of-
service or vice versa. PLM users for instance are not interested if an entity that is al-
ready powered off, later is physically extracted from the system. But the cause of a
state-change is important information. Physical extraction may need different han-
dling than administrative commands or faults.

5 Virtualization Support

In short, virtualization is a technique for hiding and abstracting the physical computer
resources and to logically replicate a hardware platform (processors, co-processor,
memory, devices …).

So since PLM is the intermediary between HPI and AIS, management of this
abstraction of the physical resources is also the task of the PLM service.

Virtualization on a given hardware is performed by a control program which cre-
ates a simulated computer environment for its consumers or guests. The control pro-
gram is called hypervisor, virtual machine monitor (VMM), or virtualization facility
(VF), and it

− may run directly on the physical hardware (bare metal hypervisor) or
− requires an operating system to run on.

The consumers or guests of a virtualized computer environment are called virtual ma-
chines (VM) and often also include an operating system. Usually a couple of such
VMs execute on one physical machine.

A typical example for virtualization is server consolidation, where virtual machines
are used to consolidate several physical servers into fewer. The demand for these
kinds of solutions increases with the increase of CPU performance.

Assuming that you have clustered HA-implementation and transform it to a virtual-
ized environment availability aspects need to be considered again. Since nodes are not
fixed on hardware, you have to ensure that in the case of a failure a failover to a dif-
ferent physical server takes place. This can be achieved by configuring services to be
part of a specific cluster instance.

Virtualization support in PLM is provided with the introduction of the execution
environment (EE) object.

If a hardware entity is running one single operating system, the operating system is
modeled as a single child-EE of the respective physical resource object.

In environments with virtualization support, parent-EEs host child- or leaf-EEs.

 Platform Management with SA Forum and Its Role to Achieve High Availability 149

Bare metal
VF EE

Operating-System
Execution

Environment

Operating-System
Execution

Environment
...

CLM-node CLM-node...

OS integrated
VF EE

Operating-System
Execution

Environment

Operating-System
Execution

Environment
...

CLM-node CLM-node...

CLM-node

Physical
Resource

OS hosted
VF EE

Operating-System
Execution

Environment

Operating-System
Execution

Environment
...

CLM-node CLM-node...

Physical
Resource

Physical
Resource

Operating-System
Execution

Environment

CLM-node

Bare metal
VF EE

Operating-System
Execution

Environment

Operating-System
Execution

Environment
...

CLM-node CLM-node...

OS integrated
VF EE

Operating-System
Execution

Environment

Operating-System
Execution

Environment
...

CLM-node CLM-node...

CLM-node

Physical
Resource

OS hosted
VF EE

Operating-System
Execution

Environment

Operating-System
Execution

Environment
...

CLM-node CLM-node...

Physical
Resource

Physical
Resource

Operating-System
Execution

Environment

CLM-node

Fig. 5. Different virtualized architectures in PLM information model

In the bare metal case, the VF is modeled as an EE running directly on the physical
resource, and (child-) EEs being the VMs or operating systems running under its
control.

There could also be the case that an operating system also acts as a VF. We have a
similar containment with an EE being the parent-EE for some child-EEs.

This way, the PLM information model will represent the containment hierarchy
with virtualization facilities and virtual machines. The actual embedding of virtualiza-
tion depends on the architecture of the implementation of virtualization facilities.

PLM will need to interact with the VF in a similar way as it does with HPI. How-
ever, the different VF implementations provide different interfaces, and there is no
standard available. Nevertheless, PLM must interact with the VF to fulfill the follow-
ing tasks:

• Start, stop, or reset virtual machines
• Get informed if a virtual machine starts up or terminates without being triggered by

PLM.
• Get informed if an error on virtual machine level occurs
• Get informed if an error within the virtualization facilities occurs
• Get informed if virtual machine configuration is changed
• Optionally, also create or delete virtual machines or change their configuration
• Some implementations provide functionality to move virtual machines to a differ-

ent hardware. In that case, PLM also needs to be informed.

VF implementations that do not provide the necessary interfaces cannot be used in
HA systems.

An implementation of the PLM service that supports a VF implementation needs to
hide the proprietary interfaces from AIS middleware and higher layers. PLM will re-
flect all changes in the virtual machines in its information model and will notify its
users using the track callback interface. That way AIS middleware configuration can
be kept independent from the VF implementation and still be aware of changes in the
cluster architecture.

150 U. Kleber, F. Herrmann, and U. Horstmann

This is very important for high availability. Standby assignments or checkpoint
replicas can protect applications from hardware failures only if they are located on
different hardware.

This includes also other hardware dependencies. Virtual machines on the same
hardware entity can share local resources. All dependencies of execution environ-
ments on physical resources can be modeled in the PLM information model and then
are visible for other software.

PLM can provide its users with all necessary information to run in a virtualized
architecture.

6 Health Checking and Fault Analysis

PLM provides a central service to analyze fault states of hardware and low level
software.

In all cases PLM uses the information model to inform its users about fault situa-
tions. Users register on the objects they are interested in, and the PLM service notifies
them in case of changes of the readiness state using callbacks.

PLM will also isolate the faulty entity or try automatic repair actions.
Hardware usually is isolated by powering off, if this is supported. In other cases,

asserting a reset can be the appropriate means.
In case of execution environments usually a restart can be issued as a repair action.

If the restart is not successful PLM can stop the execution environment by different
means. In case of an operating system running on a virtual machine, the virtualization
monitor can be called to stop that virtual machine. In other cases it can be stopped by
hardware means.

6.1 Faults of Physical Resources

Hardware provides many sensors for an entity. HPI reports changes of the states of
these sensors using events, but in many cases sensors must be read actively, and their
values need to be analyzed and interpreted. This analysis is not trivial, and in many
cases operators will like to tune the fault analysis to their specific needs. Depending
on the availability requirements, it may be necessary to take hardware out-of-service
in case of high temperature - to protect from greater damage, while with different re-
quirements, it may be necessary to use the hardware as long as possible. So the sensi-
tivity of such a hardware health monitoring must be very specifically configurable.
For some operators, it may be natural to detect possible fault situations as early as
possible and isolate the affected hardware, while other operators will try to use the
hardware as long as possible - even while it may already be running in much too high
temperature. So PLM will provide means to configure that.

When PLM detects a hardware fault situation, it will isolate the faulty hardware, if
possible, and it will inform software applications about the outage. In case of predic-
tive failure detection, it will be possible to smoothly terminate services. Also the ac-
tions to isolate faulty hardware need to be adapted to the operators’ needs.

It is very important to centralize the analysis of hardware health states, because
usually there are multiple users affected if a hardware entity becomes faulty. How-
ever, not every program should do its own analysis.

 Platform Management with SA Forum and Its Role to Achieve High Availability 151

6.2 Faults of Execution Environments

PLM normally can do health checking and fault analysis for hardware completely by us-
ing HPI. However, PLM needs to implement specific mechanisms to manage an execu-
tion environment, depending on the supported operating systems and virtual machine
monitors. Also on this level health monitoring and fault analysis is important.

In virtualized architectures, the virtual machine monitor can perform isolation of
execution environments or issue repair actions. These actions need to be controlled by
PLM as needed by the SA Forum middleware.

7 Correlation

Hardware faults and faults of the operating system layer usually cause a number of
subsequent state changes in the system. For instance, components are terminated
when an operator starts to remove replaceable units from the system; services are
failed over or even terminate. In a live system, it is important to be able to identify the
root causes of these events. Especially in case of service outage, it is very important to
know whether the outage was caused by a hardware failure, a software programming
error, or by an interaction of the operator. Only by knowing the cause, the appropriate
repair procedure can be started.

Platform management can support this correlation by providing root causes in most
of the frequent cases. Thus it enables other services to correlate their actions to these
root causes.

Let us demonstrate this with an example.
We use again the AMC disk in a system like the example architecture above. Let

us assume the disk contains the system partition of a UNIX-type operating system
running on that blade. On top of this operating system, we have a cluster node, AIS
services and applications. The disk may fail or run out of free space.

Let us first discuss what happens without special handling by platform management.
When the disk suddenly fails, an HPI event is generated. The operating system will

continue running for a short time, but it will crash as soon as it accesses the disk.
AMF health checking will detect that all components and service units on that cluster
node have died and perform failover. Loss of data or communication sessions will be
kept to a minimum by AIS mechanisms. However, it is not easy to correlate their
failover to the disk outage.

When platform management is in place, it will transform the HPI event reporting
the disk failure to a notification using AIS notification service (NTF). This notifica-
tion provides a unique identification, the correlation id of the root-cause. By configu-
ration, PLM is aware that the execution environment depends on the disk. So it can
automatically decide that the OS must be terminated and issue notifications about this
state change. NTF service allows sending information about the root cause with these
subsequent notifications. This information is provided just by including the correla-
tion id of the root cause in the subsequent notifications. PLM will also inform the
cluster management service CLM about the OS termination and will provide the root
cause correlation id. The cluster node leaves membership, and CLM service reports
this event with a notification which includes the correlation id. CLM informs AMF

152 U. Kleber, F. Herrmann, and U. Horstmann

and also passes to it the correlation id of the root cause. AMF performing the redun-
dancy failovers again includes the root cause correlation id in all state change notifi-
cations and also in the interface to the applications. Thus, fault analysis can easily be
done by providing root cause and intermediate notification ids. The user knows which
application events are caused by the disk outage without further analysis. Of course, it
may happen that fault handling of higher layers starts before the correlation id is pro-
vided. In that case, fault analysis still needs to find the correlation.

In the same way PLM provides correlation ids not only when the root cause is a
fault situation. Common root causes are also physical extraction or insertion of hard-
ware entities or administrative operations.

8 Upgrade Support

The system model with physical resources and execution environments as object in-
stances in the information model is also the basis for upgrading these entities. It pro-
vides the necessary administrative commands to define operational procedures for
hardware upgrade and allows defining software upgrade campaigns with the SA Fo-
rum software management framework (SMF). The UML definitions of the object
classes for PLM objects include versioned types in the same way as versioned types
are used for applications in the SA Forum SMF specification. Thus PLM prepares
rolling operating system upgrade using SMF.

8.1 Operating System Upgrade

The upgrade campaign for an operating system will use PLM administrative opera-
tions to lock, restart, and unlock the respective execution environment as needed for
the specific case. PLM service while executing the lock command takes care of the
termination of affected services in a graceful way via callbacks to registered users like
CLM or AMF. While the operating system is locked, SMF can run the necessary in-
stall scripts, for instance, to install OS patches, or even to install complete new soft-
ware. SMF uses a PLM administrative operation to reboot the OS, and it unlocks the
execution environment when the installation is completed. When PLM carries out the
unlock operation, the middleware services and applications will be started as config-
ured, and eventually everything will be in-service again.

Please note that upgrade campaigns for operating systems are done in the same
way in virtualized architectures as without virtualization. PLM service knows,
whether virtualization is present and the monitor can be used e.g. to issue a hard reset
for an operating system.

8.2 Hardware Upgrade

Hardware upgrades usually include software upgrades. Hardware upgrade procedures
will use SMF upgrade campaigns and PLM administrative operations on physical re-
source entities. In most cases, reconfiguration of the information model for the physi-
cal resource entities will be necessary. This reconfiguration can be included in SMF
campaigns to allow for a better control of the whole procedure.

 Platform Management with SA Forum and Its Role to Achieve High Availability 153

9 Achieving 5 Nines in Reality

SA Forum AIS services provide the necessary means to enable services to provide
high availability, that is 99,999% of the time a system provides the service. With 24h
per day and 7 days per week, this is about 5 minutes of allowed average service out-
age per year.

No technician is able to replace faulty hardware in 5 minutes after the fault was re-
ported, and in a large system, usually more than one hardware outage happens per
year, considering hardware fault probabilities and mean time between failures. There-
fore, redundant systems are provided. As soon as a fault occurs, redundant entities are
used. However, the occurrence of a second fault before the first failure is repaired can
often cause an outage.

That means, there are always times in reality when redundancy is not there any-
more - due to hardware faults. SA Forum AMF provides complex redundancy
schemes and the possibility to provide spare units in addition to the most common ac-
tive/standby model. As providing double redundancy may be very expensive, times
without redundancy must be kept as short as possible. Several measures can be used
to achieve this; and usually only a combination of those measures really helps.

9.1 Reduce the Time to Repair

The time to repair usually contains several things the operator or technician needs to
do:

− Identify what needs to be done.
− Get the spare part from the store.
− Get to the location of the system.
− Perform the replacement.

Two of these points can only be improved by logistics, but in telecommunication, of-
ten traveling cannot be avoided. So we need to reduce the time to identify the right
repair procedure, and the time the operator needs to carry it out.

The actual replacement time in case of hardware exchange depends mostly on
hardware architecture and on logistics. Start-up time of the new hardware also needs
to be considered.

Platform management service may help significantly in identifying the right repair
procedure. Without the right information, even a "simple" case for hardware exchange
can be mistaken. So it is very important to quickly identify hardware faults, and also
to identify the root cause when a system is sending out high numbers of event notifi-
cations. SA Forum PLM service and its correlation support play an important role
here.

9.2 Avoid Blaming Hardware as Faulty When It Is Not Faulty

Usually hardware replacement is costly. Not only the costs for the spare part need to
be considered; the costs for doing the replacement are high, too. The faulty hardware
normally is tested again in the factory, and will be sent back if it seems functional.

Centralizing hardware fault analysis in platform management allows improving the
rate of correct fault categorization.

154 U. Kleber, F. Herrmann, and U. Horstmann

10 Summary and Outlook

Well designed platform management is essential to achieve high availability not only
in theory but also in reality, when high numbers of systems need to be maintained in
the field.

SA Forum will provide in its next release a specification for a new platform man-
agement service. This service will close the gap between AIS middleware and HPI
specification. It completes the information model by representing hardware, operating
system and virtualization layer, and it standardizes the interaction between those lay-
ers, middleware and application services. The PLM service is the basis to provide
fault correlation to improve service maintenance.

References

1. Service Availability Forum, Service Availability Interface, Overview, SAI-Overview-
B.03.01

2. Service Availability Forum Hardware Platform Interface, SAI-HPI-B.02.01
3. Service Availability Forum, Application Interface Specification, Information Model Man-

agement Service, SAI-AIS-IMM-A.02.01
4. Service Availability Forum, Application Interface Specification, Availability Management

Framework, SAI-AIS-AMF-B.03.01
5. Service Availability Forum, Application Interface Specification, Cluster Membership Ser-

vice, SAI-AIS-CLM-B.03.01
6. Service Availability Forum, Application Interface Specification, Software Management

Framework, SAI-AIS-SMF-A.01.01
7. CCITT Recommendation X.731 | ISO/IEC 10164-2, State Management Function
8. Virtualization: State of the Art. Published by SCOPE Alliance, http://www.scope-

alliance.org

T. Nanya et al. (Eds.): ISAS 2008, LNCS 5017, pp. 155–170, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Automatic Generation of AMF Compliant
Configurations

Ali Kanso1, Maria Toeroe2, Ferhat Khendek1, and Abdelwahab Hamou-Lhadj1

1 Electrical and Computer Engineering Department
Concordia University, Montréal, Canada

{al_kan,khendek,abdelw}@ece.concordia.ca
2 Ericsson Inc., Montréal, Canada

Maria.Toeroe@ericsson.com

Abstract. Service Availability Forum has defined a set of APIs to enable the
building of off-the-shelf components for applications providing highly available
services. A set of services has been defined and the Availability Management
Framework is the service responsible of managing availability and therefore
shifting this task from the applications to the middleware. Designing an AMF
compliant configuration, for a given application, can be a tedious and error
prone task because of the large number of attributes and parameters to be taken
into account. In this paper, we propose an algorithm and the corresponding tool
prototype for generating an AMF compliant configuration. We illustrate our
approach with an example and discuss the main issues of the automatic
generation.

Keywords: AIS, AMF, AMF Information Model, Entity Type File, Configura-
tions Generation.

1 Introduction

Service Availability Forum (SAF) [1] aims at providing high availability of network
elements, systems and services through the usage of commercial off-the-shelf
building blocks. High availability requires first of all no single point of failure, which
is achieved by clustering, by use of different redundancy models, and by coordination
of the resources within a cluster. SAF is developing and maintaining an Application
Interface Specification (AIS) [2] for high availability middleware that is independent
from any hardware platform and any specific vendor implementation. The SAF AIS
defines the Availability Management Framework (AMF) to enable the management
of the availability of services of applications that comply with the AMF information
model and API [2]. Based on this information model, AMF coordinates the different
resources in a cluster using the API.

The AMF information model describes the system configuration to be managed by
AMF in terms of different software entities. Some of these entities characterize the
service providers and their organization while others are related to the provided
services assigned dynamically by AMF to the service providers depending of their

156 A. Kanso et al.

health and eligibility. The AMF information model also describes the types of these
entities, as well as the cluster and its nodes where the entities are deployed.

The information model is provided to AMF through the Information Management
Model service (IMM) [3]. An AMF compliant configuration to be loaded into IMM is
described in XML (eXtensible Markup Language) [4] and accessed by AMF through
the IMM service. A more formal and complete discussion of an AMF compliant
configuration is provided in Section 2.

Developing a configuration in order to provide and protect services may be a
tedious and error prone task to be undertaken manually by system developers. In this
paper, we describe our approach for generating automatically an AMF compliant
configuration from a set of type descriptors provided by the software vendor and from
the configuration designer requirements, which include the service to be provided, its
protection level indicating the redundancy model and the system to be deployed on.
Obviously from a given set of type descriptors and a set of requirements, several
AMF compliant configurations may be generated for the same system, which can be
compared according to different criteria. In the approach presented in this paper, we
are aiming at generating one AMF compliant configuration by integrating directly
into the generation algorithm a certain number of design/configuration decisions. We
discuss these decisions and their impact as they are encountered. We have
implemented our algorithm in an ECLIPSE environment.

In the rest of this paper, we first provide the background knowledge on AMF
configurations and related concepts. In Section 3, we elaborate on our approach for
automatic generation of AMF compliant configurations from a given set of
requirements provided by the configuration designer and a set of types describing the
software coming from the vendor. We present the prototype tool and its application
in Section 4. In Section 5, we discuss issues that have arisen during this research and
future work.

2 AMF Compliant Configurations: Background and Related
 Work

2.1 Background

AMF is part of AIS, it defines a set of APIs for availability management through
coordination of redundant resources [2]. In order to provide high availability, AMF
requires a certain organization of the resources, i.e. a configuration, which is
described by the information model. This information model consists of the different
software entities to be managed by AMF in the running system in order to provide
service availability, the types of these software entities that describe common features
of the entities belonging to them, and the cluster nodes on which the software entities
are deployed.

2.1.1 Software Entities
According to the AMF information model [2], the basic building block of an AMF
configuration is a component. An AMF component is a set of software and/or
hardware resources. Components are grouped into a service unit (SU) that combines

 Automatic Generation of AMF Compliant Configurations 157

their functionality to provide some services. In order to provide and protect services,
SUs are grouped into service groups (SGs). An SG protects a set of services, which
are represented as service instances (SIs). SIs are composed of component service
instances (CSIs), when a particular SI is assigned to an SU, its composing CSIs are
assigned to the components in this SU. The grouping of service groups forms an AMF
application. Each SU is deployed on an AMF node, thus an SG is deployed on a node
group. The set of all AMF nodes forms the AMF cluster.

AMF coordinates redundant entities (SUs and their components) according to a
certain redundancy model that defines how many SUs (respectively components) are
active, how many SUs (respectively components) are standby for protecting an SI
(respectively CSI). For each SI AMF selects at runtime which SU shall perform in
which role and makes the appropriate assignments via API callbacks to the
components. Several redundancy models have been defined in the standard [2]. Each
of them has its own characteristics. In the 2N model for instance, at most one SU can
be active for all SIs, and at most one other SU can be standby for all SIs [2] the SG
protects. A redundancy model may require specific component capabilities in order to
protect the CSIs of the SIs. A component capability is defined as pair (x, y), where x
represents the maximum number of active CSI assignments and y the maximum
number of standby CSI assignments the component can have for a particular
component service type. Therefore, depending on the redundancy model and the
services to be provided, certain component types may be more suitable than others
and some other component types may not be usable at all. For example, a component
type that can have only active or only standby assignments at a time can be used in an
SG that has a 2N redundancy model, but it is not valid for a SG that has an N-way
redundancy model where each of the SUs may be active for some SIs and standby for
others simultaneously.

Fig. 1 shows an example configuration of AMF entities. In this example, a cluster
is composed of two nodes, A and B, with one SG protecting one SI in a 2N
redundancy model. The SG has two SUs, SU1 and SU2, each composed of two
components. The distribution of the active and standby assignments is decided by
AMF at runtime.

2.1.2 Entity Types
There are two sorts of AMF entities: typed entities and non-typed entities. The typed
entities are: the application (application type), the service group (SG type), the service
unit (SU type), the component (component type), the service instance (service type),
and the component service instance (CS type). The non-typed entities are: the cluster
and the node. Although not shown in Fig. 1, each typed entity must refer to a type,
since types are an integral part of the configuration.

Types are used in the AMF information model to define a set of common
characteristics shared by all the entities referring to the same type. The entity types
also determine the relation they have with other entity types. Thus, defining the
relations their entities need to fulfill toward entities of other types. For example the
SU type specifies the set of component types it contains, which defines components
of what types must compose each of the SUs of the SU type. In the configuration
generation algorithm in Section III, we pay particular attention to these types. The
AMF entities and types and the relationships among them are described in the
standard using a UML class diagram [5].

158 A. Kanso et al.

Active:
Standby:

Node B Node A

Application

SG
SU-1

Component-1

Component-2

SU-2

Component-3

Component-4

SI

CSI-1

CSI-2

Fig. 1. Example of configuration of AMF entities

2.1.3 SMF View vs AMF View of Entity Types
The data required to configure these types, entities and their attributes, comes from
two sources: The Entity Type File (ETF) [7] and the configuration designer. The SAF
Software Management Framework (SMF) specification [6] standardizes the content
and the format of ETF [7] to allow software vendors to describe their products by
means of types they implement. In this SMF context, types are used to characterize
the software for all its possible deployments and settings. Hence, they differ from the
types used in the context of AMF, which focuses on the runtime management aspects.
Types of the SMF view could be perceived as meta-types to the types of the AMF
information model.

ETF is an XML file provided by the software vendor to describe the software from
SAF SMF perspective. For an AMF application implementation, it describes at least
the component types and component service types implemented, including the
dependencies and compatibility among these types. If there are further constraints on
how and which the above types can collaborate to provide services, these constraints
are specified in SU types, SG types, service types, and application types as necessary.
As a result, the ETF may not be complete with respect to types for an application
implementation, whereas in an AMF configuration all the AMF types must be present
and complete.

Due to their purpose, there exist correspondences and discrepancies between the
types described in an ETF and the types described in an AMF model. For example,
AMF describes only the attribute names of CS types whereas in ETF in addition to

 Automatic Generation of AMF Compliant Configurations 159

this, the attribute type and range can be specified by the software vendor, to be able to
configure the CSIs as AMF requires specific values for all the attributes. Similarly,
dependency between component types may be specified in an ETF, but this is not
reflected by the AMF information model since AMF does not need to know these
dependencies among types. However, dependencies between components are
captured in a different way. The instantiation level of components within an SU
informs AMF to instantiate an independent component before those depending on it.

2.1.4 The IMM View of the AMF Information Model
AMF entities and types are represented as objects in the SA Forum Information
Model [8]. The IMM service is the SAF service that manages these classes and
corresponding objects. The SAF information model, including the AMF configuration
can be described using a standardized schema, called the IMM XML schema [3]. An
IMM XML file of a given configuration is loaded into IMM at system start up and
made available to the SAF services including AMF through an API.

2.1.5 The Challenge of Generating an AMF Configuration
The goal of the configuration generation is to identify the set of service provider
entities that matches the requested set of services and can protect them according to
the requested redundancy model on a particular cluster. Generating such an AMF
configuration is not straightforward. First of all, there are just too many inter-related
entity and type objects that a configuration designer needs to work with. Consistency
checks must be performed at various levels of the configuration generation process.
For example, one must ensure that the ETF type dependencies and constraints are
respected when creating components, assigning components to service units, etc.
There are also key decisions that need to be made taking into consideration various
constraints such as the maximum number of components of a certain type in an SU,
the capability of a component when providing a certain component service type, etc.
In short, generating an AMF configuration could be a tedious and overwhelming task
for a designer without tool assistance. Moreover, an automatic generation of the
configuration will allow for the exploration of several potential configurations and
compare and rank them according to predefined criteria.

2.2 Related Work

The standardization at SAF is ongoing, existing service specification are reviewed
and updated as necessary, and more of the services are being defined. The B.03.01
version of the AMF specification on which the reported work is based differs
significantly from earlier versions as it introduced the AMF types to be aligned with
the first release of the Software Management Framework specification.

The work on implementing the APIs is ongoing in different places; OpenAIS [14].
OpenSAF [15] and OpenClovis [16] are open source projects aiming at developing a
SAF compliant middleware for high availability. These provide limited if any support
for automatic configuration design and none of them considers the AMF types yet.

The closest research work to the contents of this paper in the context of SAF has
been reported in [10]. The authors in [10] apply the Model Driven Approach (MDA)
to the design of AIS configurations. In this approach an initial AIS compliant

160 A. Kanso et al.

configuration is devised using predefined design patterns, gathered from previous
experiences. This initial configuration is referred to as the Platform Independent
Model (PIM), which is then transformed and specialized automatically to a Platform
Specific Model (PSM) to be used in a specific implementation of AIS. Meta-models
are used for the transformation and for the validation of configurations. Our work is
different from this approach, as we automatically generate this initial configuration or
PIM.

More work on configuration generation has been done in the more general context
of software configuration management, particularly using constraint satisfaction
techniques and policies as reported in [11, 12]. Authors in [12], for instance, propose
an approach for generating a configuration specification and the corresponding
deployment workflow from a set of user requirements, operator and technical
constraints, which are all modeled as policies. An example of constraints is, for
instance, a given operating system can only run on certain processor architectures.
Generating a configuration is formulated as a resource composition problem taking
into account the constraints. Our approach is similar from this point of view;
however, our focus is on the availability and AMF constraints instead of general
utility computing environments. Challenging constraints, such as redundancy models
to be provided, are not taken into account in [12].

3 Configuration Generation

In this section, we introduce and discuss the main steps of our configuration
generation algorithm. In the current approach, we consider the generation of a
configuration for only one AMF application consisting of SA-aware components
only, i.e. those that implement the AMF API. Thus, there is only one application type,
and all other types are considered as subordinates to this type.

As shown in Fig. 2, the algorithm takes as input the ETF provided by the software
vendor and the configuration requirements provided by the configuration designer
including the application services to be supported. The next step focuses on
determining the AMF entity types that can support these required application services:
namely the SU types and the SG types. Once these types are determined, we proceed
with creating their entities: components, SUs, SGs, as well as assigning SIs to SGs.
Finally, the remaining entity and type attributes are completed. The generated
configuration is specified in IMM XML.

3.1 Input Data and Validation

The algorithm takes three sets of input data:

• A set of ETF types that describe the software to be used,
• A set of services to be provided by the application, and
• A set of nodes on which the configuration has to be deployed.

As discussed in the previous section, the ETF types describe the software
application from the vendor’s perspective. This ETF must contain at least component

 Automatic Generation of AMF Compliant Configurations 161

Fig. 2. Main steps for configuration generation

types and CS types. Other entity types such as SU types, SG types, and the
application types may also be provided in order to capture limitations and constraints
of the software. However, they are not necessarily provided in ETF.

The second set of input data is provided by the configuration designer and
characterizes the services that the target configuration should support, i.e. what is the
expected workload that needs to be handled. If any of the service types that needs to
be provided by the target system is not specified by ETF, the designer must define
them using existing CS types. The SIs and CSIs are specified for these service types.
To facilitate this task the concept of templates has been introduced for specifying SIs.
In an SI template, the configuration designer specifies for each necessary service type
the total number of SIs to be created, within that the number of SIs to be assigned to
the same SG, and the redundancy model of the SG that will protect these SIs.

Since SIs are collections of CSIs, each SI template is associated with a set of CSI
templates based on the CS types defined for the service type. In each CSI template,
the designer specifies the number of CSIs to be created for each required CS type
within the SI. This must be in accordance with any constraints defined by service
type, like the minimum/maximum number of CSI of a certain CS type that can be
present in an SI.

Based on the SI and CSI templates the objects for the SIs and CSIs are generated
and added to the configuration. The current solution does not cover the
parameterization of CSIs. At this stage it is still a discussion topic.

Configuration designer
requirements

ETF

Input data validation, creating SIs
and CSIs

AMF configuration in IMM XML

Type selection

Creating components, SUs, SGs and
the application

Completing the configuration
attributes

162 A. Kanso et al.

The configuration designer may provide a cluster configuration, or an existing one
can be used to obtain the information about the cluster (e.g. name, CLM cluster), and
the nodes (e.g. number of nodes, fail over probation). Objects for these non-typed
entities are created at this stage.

3.2 Type Selection

The objective of this step is to determine the types of the entities that will provide the
required services as specified by the configuration designer. The primary goal is to
match one of the existing types with the specified services. When no types exist for a
particular compound entity, then an attempt is made to create the appropriate entity
type. When no matching type can be found or created, because of constraints that
cannot be met, then the software described by the types cannot provide the requested
services as specified.

In the current approach, we assume that a SI template defines one SG type. All SIs
of this template will be protected by SGs of this SG type. Within each of these SGs
the SUs will belong to the same SU type. An SG protects SIs generated from one SI
template only.

With these assumptions in mind, we start by determining the SU type that provides
the service type of the set of SIs generated from the same SI template. If any SU types
are provided in ETF, then we try to select one of them, and the selection is based on
two criteria. The first one is that the SU type must provide the service type of these
SIs. This is straightforward to check since an SU type specifies the service types it
provides. The second criterion is that each SU belonging to an SG must be able to
handle the load of SI assignments for both active and the standby states. An SU type
may put restrictions with respect to the number of components the SU of this type can
contain and each of the components has its active/standby capability according to the
component type specification. As a result an SU of an SU type may have capacity
limitations that must be respected during the selection. For illustrating the constraint
of load to assign to an SU, let us consider an SG with 5 SUs in an N+M redundancy
model (with for instance 3 active and 2 standby). If, for instance, 60 SIs are to be
protected by this SG, then each SU should have the capability of being active for 20
SIs or standby for 30 SIs.

The load each SU is expected to handle is calculated for the active/standby roles
according to each redundancy model. It takes into account the number of SIs the
appropriate SG shall protect, the number of assignments for each of the roles within
the SG and the number of SUs among which this task is distributed within the SG at
any given time. This gives the minimum number of SIs an SU needs to be able to
handle in active/standby role. The calculated values are compared with the respective
capacity of each SU type that can provide the necessary service type. The maximum
active and standby capacities are calculated by first calculating the maximum number
of SIs that the SU type can handle with respect to each CS type the SIs contain.
Subsequently the minimum of these numbers is taken as the maximum capacity for
the SI.

Several SU types that provide the required service type with the required capacity
may be described in the ETF. On the other hand, it may happen that no such SU type
exits in the ETF. In this case, the configuration generation fails. When no SU types

 Automatic Generation of AMF Compliant Configurations 163

are provided in ETF, i.e. fewer constraints are provided in the ETF, we build an SU
type that provides the required service type with the required capacity. For the
construction of this SU type, it may happen that more than one component types can
be used. In the current approach, the preference is given to component types that have
higher capability. The configuration generation will also fail, if based on the
component capability no component type matches the redundancy model specified for
the SIs.

Once an SU type is found or created, the algorithm proceeds to select from ETF an
SG type based on the redundancy model specified in the SI template and which refers
to the selected SU type. Note that many of the SG type’s parameters were already
used in the SU type selection. The algorithm terminates if none of the SG types
matches. If no SG type is given in ETF then – as in case of the SU type – a new SG
type is created using the selected SU type and the requested redundancy model.

The selection of SG and SU types is repeated for each SI template until all of them
have been satisfied.

Provided that only types from ETF were selected in the previous steps, the
algorithm applies the selection process to the application types specified in ETF. It
selects the application type that references all the SG types that were selected
previously. Otherwise it constructs a new application type as a union of the selected
SG types.

3.3 Generating the Remaining AMF Entities

Once all the types have been determined and the corresponding configuration objects
have been added to the configuration, we proceed with the creation of the
configuration objects for the AMF entities of these types. That is, the objects for SUs,
components, SGs, and the application are created and configured.

In the SI template, the configuration designer specified – indirectly through the
redundancy model – the number of SUs and SGs to be created, but not the number of
components. To configure an SU, we need to determine this number. The number of
components of each component type that must be created in an SU depends on the
load, i.e. number of SIs assigned to the SU, the number of CSIs within those SIs, and
the component capabilities. For an illustration, let us consider an SG that has 2 SUs
protecting one SI composed of 5 CSIs of CST-A according to the 2N redundancy
model. Let us assume the capability of the component that supports CST-A is 1 active
and 10 standby. In this case, we need 5 components in our SU. While one component
is enough to standby for all the CSIs, we need 5 components to be active for all the
CSIs. .

The same calculation is repeated for every set of CSIs of the service type the SIs
belong to. Thus, we populate the first SU of the first SG with all the necessary
components. Subsequent SUs of the same SG are created by duplicating the first one
and the SG is assigned a set of SIs that have been generated from the appropriate SI
template at the beginning of the configuration generation algorithm as described in
Section 3.1. Subsequent SGs for the same SI template are also created by duplicating
the first one. The procedure is repeated for all SI templates until all SIs have been
assigned to SGs.

164 A. Kanso et al.

3.4 Completing the Configuration Attributes

When the procedures described in Sections 3.1-3.3 have been completed, major part of
the configuration attributes of the selected types and generated entities are determined
based on the different selection and generation criteria described, however not all of
them. To complete the configuration generation some additional attributes need to be
assigned values. Here we briefly touch on a few that require further procedures.

If not specified explicitly in the configuration, an AMF implementation will decide
on the assignment to nodes of the different SUs within the information model. The
assignment procedure is not standardized, which means that different AMF
implementations may do it differently. Our algorithm includes a procedure for
distributing the generated SUs among the nodes of the AMF cluster and fill in the
appropriate configuration attributes: The procedure assumes that the AMF nodes have
equal capacities and therefore equally distribute the SUs among them.

In addition, we have developed a ranking procedure that enables equal assignment
of SIs to SUs within an SG by completing the SU rank attribute for each SI. In other
words, we ensure load balancing among SUs. Moreover, in the case of the N+M
redundancy model, we rank SUs in a way that ensures that AMF would not replace an
active SU that fails, with two standbys. The procedure for ranking SUs for SIs is
dependent of the redundancy model attributes of the SG and the number of SIs.

4 The Configuration Generator Tool

The algorithm presented in the previous section has been implemented in a prototype
tool developed in Java, using the Eclipse environment. It is anticipated to make this
tool as an Eclipse plug-in to take full advantage of the capabilities of the Eclipse
integrated environment.

4.1 Description of the Tool

Fig. 3 shows the overall flow of information. The user interacts with the tool through
a Graphical User Interface (GUI).

Graphical
User

Interface

Object
Model

Configuration
Generator

I/O Module

Data Repository
(XML files)

Fig. 3. The data flow diagram of the configuration generation tool

 Automatic Generation of AMF Compliant Configurations 165

The Object Model is based on the AMF information model described in the AMF
specifications [2]. Additional classes and associations have been created to map the
entity types defined in ETF schema [7] to the ones defined in AMF.

The Configuration Generator module encompasses the configuration generation
algorithm presented in the previous section. It populates the AMF information model
within the Object Model. The I/O module is used to save the configuration in IMM XML.

The I/O module also contains methods to read ETF and extract information from it.
For this purpose, an ETF parser has been created. The data repository stores all data
necessary for generating configurations including IMM XML and ETF.

4.2 The Tool User Interface

A snapshot of the prototype tool GUI is shown in Fig. 4; it consists of four views: The
Input view (the left pane), the Attribute view (the middle pane), the AMF Instance
view (the upper-right pane), and the Description view (lower-right pane). They are
used to present the content of the Object Model from different perspectives.

Fig. 4. Snapshot of the tool GUI

The primary role of the Input view is receiving the input data for the configuration
generation. Under the Types tab the AMF entity types read from ETF are presented to
the configuration designer. It also allows for adding additional types that are not

166 A. Kanso et al.

present in ETF yet the designer would like to consider for the configuration. Under
the Instances tab the SI and CSI templates can be entered together with the non-typed
entities. After running the configuration generation, this view will be completed with
the generated entities and possibly new types.

The AMF Instance view is so called because it follows the structure of the AMF
Instance View defined in the specification [2]. It contains the AMF entities of the
resulting configuration after it has been generated. The Attribute view is used to
display the attributes for the different objects selected either from the Input view or
the AMF Instance view. Finally, the Description view displays in a textual form any
additional information about the configuration which may not be present in any of the
other views, such as the per SI SU ranking.

4.3 Application Example

To demonstrate the generation of an AMF configuration using the prototype tool, let
us consider a simple example: A Web service application that provides e-mail
services using HTTP and SMTP protocols. Let us assume the ETF contains the
following CS types: HTTP-CST, and SMTP-CST. It also contains the components
types: HTTP-CT, SMTP-CT, and BAD-HTTP-CT.

Table 1 describes the CS types provided by these component types, as well as their
capability models. Note that HTTP-CT and BAD-HTTP-CT provide the same HTTP-
CST, but with different capabilities. Therefore, the tool has to choose from them.
There is no dependency among the components. The service type for this example is
created by the configuration designer and it consists of two CS types as shown in
Table 2. The configuration designer is free to come up with any combination of
component service types into service type to match the services of the target system
as long as it satisfies the constraints imposed by the types described in the ETF. The
tool verifies when the input is provided that such constraints are met.

As discussed in Section 3, CSIs (see Table 3) and SIs (see Table 4) are specified
using templates. They are also provided by the configuration designer. They reflect
the workload or traffic that needs to be handled by the target configuration and the
desired protection level for these services.

The cluster’s configuration is entered either by the designer or extracted from the
current system configuration. This includes the number of nodes in the cluster, fail
over probation, etc.

Table 1. Component types and the CS types

Component
Type

Provides
CSTs

Capability Dependency

HTTP-CT HTTP-CST 4 active and 3 stand by None
BAD-HTTP-CT HTTP-CST 1 active or 1 stand by None
SMTP-CT SMTP-CST 3 active or 2 stand by None

 Automatic Generation of AMF Compliant Configurations 167

Table 2. The service type

Service type Member component service types
Email-services HTTP-CST, SMTP-CST

Table 3. The content of the CSI templates

CSI template name Number of CSIs CST
HTTP-CSI-temp 3 HTTP-CST
SMTP-CSI-temp 2 SMTP-CST

Table 4. The content of the SI template

SI
template
name

Number
of SIs

Service
Type

Member
CSI-
templates

Redund.
model

Number
of SUs

SI-temp 6 Email-
services

HTTP-CSI-
temp

SMTP-CSI-
temp

5 plus 3 8

Fig. 5. A snapshot of the AMF Instance view for the example

168 A. Kanso et al.

The configuration generated is displayed in Fig. 5. It contains one application that has
one SG (NewSG-0) with 8 SUs (newSU-0 – newSU-7) as requested for the redundancy
model in Table 4 (5 plus 3) and each SU has 4 components (newComp-HTTP-CT-0,
newComp-SMTP-CT-0, newComp-HTTP-CT-1, newComp-SMTP-CT-1). Since 6 SIs
need to be provided by the SG, this load should be split among 5 SUs for the active
assignments and 3 SUs for the standby assignments. As it is decided at runtime, which
SU is in which role, all of them have to be able to provide either role, which means 2 SIs
per SU in each role. This means 6 HTTP-CST and 4 SMTP-CST assignments per SU
have to be compared with the component capabilities. The tool gives preference to
HTTP-CT based on its capability, which means 2 of such components are needed. The
SMTP-CST is matched up only with SMTP-CT and also 2 of them are needed.

The size of the IMM XML file for this simple configuration is 85KBs. The size of
this file for real life applications may be very challenging to be handled manually by
developers.

5 Conclusions

In the current approach, we consider the generation of only one AMF compliant
configuration. This one configuration is created based on the strategy implemented in
the generation algorithm during the selection or creation of different types, such as
component types, SU types or SG types. However, using different strategies different
configurations can be generated with a choice of alternative component types, SU
types, or SG types. The criteria of selecting the types can change due to changing the
preference for some of the attributes or in the future in case further description of the
types are provided, such as the resources required by each entity of a specific type, of
the mean time between failure for components, licensing cost, and many others as
those taken into account in [13]. Having these attributes will allow us to generate
multiple configurations according to different criteria and thus exploring a wider
space of configurations and choosing the one that best suits the environment of
deployment and the designer requirements. Moreover, we have considered the
generation of a configuration for a single SA-aware application only.

It is important to mention again that there are situations where a configuration
cannot be generated. This is the case, for instance, when the designer requirements do
not match the system’s hardware configuration. For example, this is the case when the
designer requires hardware redundancy for an SG, but the number of SUs in the SG
exceeds the number of nodes. While this may be easy to spot in some cases, in other
cases it is not straightforward that the configuration designer requirements cannot be
met with the given ETF and its constraints, that is, due to limitations of the software.
For instance, one may find that there is no component type capable of supporting the
required redundancy model; or the required load to provide the requested protection
for the service instances exceeds the capacity of any service unit type provided in
ETF due to limitations in the number of components or their capability; or none of the
SG types in ETF uses the required redundancy model.

During the course of this project, we have encountered some challenges and came
across some limitations of the AMF information model and ETF. The AMF

 Automatic Generation of AMF Compliant Configurations 169

information model will certainly benefit from some refinements and clarifications
using inheritance, especially at the component and component type level. As for the
limitations, one can mention that when more than one component can take a particular
CS type in a given SU, there is no way to configure for AMF which component
should be assigned. This becomes critical if there is a dependency between the
component types and the CS types, which should be matched by the CSI assignments,
but AMF has no information about it. The current form of ETF is not powerful
enough to express all the dependencies/requirements a component type may have
towards its environment (e.g. operating system, other applications). ETF allows for
limited ways to define the valid combinations of component types. This is done
through SU types and SG types. These combinations depend on the component types'
interfaces toward each other, which is not captured in SAF.

This work is in progress and our approach is still evolving. This exercise helped us,
the academic partners involved in the project, tremendously in understanding SAF
specifications, the different aspects of AMF types (ETF versus AMF), the complex
dependencies among the different types and their entities. We are working on
improving our method in order to overcome its limitations, e.g. consider multiple
applications and from different categories as described in the AMF specification. We
also plan to use more formal settings, such as the technique of constraints satisfaction
as described in [11, 12], in order to explore efficiently all the potential solutions and
compare them according to predefined criteria.

Acknowledgements. This work has been partially supported by the Natural Sciences
and Engineering Research Council of Canada (NSERC) and Ericsson Software
Research.

References

1. Service Availability Forum at: http://www.saforum.org
2. Service Availability Forum, Application Interface Specification. Availability Management

Framework SAI-AIS-AMF-B.03.01
3. Service Availability Forum, Application Interface Specification. Information Model

Management Service SAI-AIS-IMM-A.02.01
4. eXtensible Markup Language (XML) at http://xml.org
5. Unified Modeling Language (UML), http://www.uml.org
6. Service Availability, Forum. Application Interface Specification. Software Management

Framework SAI-AIS-SMF-A.01.01
7. SAI-AIS-SMF-ETF-A.01.01.xsd
8. SAI-XMI-A.02.00.09.18.xml.zip
9. SAI-AIS-IMM-XSD-A.01.01.xsd

10. Kövi, A., Varró, D.: An Eclipse-Based Framework for AIS Service Configurations. In:
Malek, M., Reitenspieß, M., van Moorsel, A. (eds.) ISAS 2007. LNCS, vol. 4526, pp.
110–126. Springer, Heidelberg (2007)

11. Hinrich, T., Love, N., Petrie, C., Ramshaw, L., Sahai, A., Singhal, S.: Using Object-
Oriented Constraint Satisfaction for automated Configuration Generation. In: Sahai, A.,
Wu, F. (eds.) DSOM 2004. LNCS, vol. 3278, pp. 159–170. Springer, Heidelberg (2004)

170 A. Kanso et al.

12. Sahai, A., Singhal, S., Joshi, R., Machiraju, V.: Automated Generation of Resource
Configurations through Policies. In: Fifth IEEE International Workshop on Policies for
Distributed Systems and Networks (POLICY 2004), June 7-9, 2004, Yorktown Heights,
New York (2004)

13. Janakiraman, G., Santos, J.R., Turner, Y.: Automated Multi-Tier System Design for
Service Availability. HP Laboratories Palo Alto, May 22 (2003)

14. http://www.openais.org/
15. http://www.opensaf.org/
16. http://www.openclovis.org/

T. Nanya et al. (Eds.): ISAS 2008, LNCS 5017, pp. 171–186, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Dependability Evaluation of a Replication Service for
Mobile Applications in Dynamic Ad-Hoc Networks*

Erling V. Matthiesen1, Ossama Hamouda2,3,
Mohamed Kaâniche2,3, and Hans-Peter Schwefel1,4

1 CTIF, Aalborg University, Niels Jernes Vej 12/A5-212
9220 Aalborg-Øst, Denmark
{evm,hps}@es.aau.dk

2 CNRS; LAAS ; 7, avenue du Colonel Roche, F-31077 Toulouse, France
3 Université de Toulouse ; UPS, INSA, INP, ISAE ; LAAS-CNRS : Toulouse, France

{ossama.hamouda,mohamed.kaaniche}@laas.fr
4 Forschungszentrum Telekommunikation Wien - FTW, Donau - City Straße 1,

1220 Vienna, Austria

Abstract. In order to increase availability and reliability of stateful applica-
tions, redundancy as provided by replication in cluster solutions is a well-
known and frequently utilized approach. For mobile services in dynamic ad-hoc
networks, such replication mechanisms have to be adapted to deal with the
frequently higher communication delays and with the intermittent connectivity.
Dynamic clustering strategies in which the replica set is adjusted to the current
network state can help to handle the network dynamicity. The paper develops a
stochastic Petri net model (and its corresponding Markov chain representation)
to analyze the resulting availability and replica consistency in such dynamic
clusters. The numerical results are interpreted in the context of a vehicular (c2c)
communication use-case and can be used to determine optimized cluster
configuration parameters.

1 Introduction

Many of the future networking scenarios consist both of wireless multi-hop parts and
infrastructure based network components. For new application types and future
service platforms, server-based applications access is not only offered by the
infrastructure network part, but also by the potentially mobile nodes in the ad-hoc
domain. An example for such service provisioning scenarios is the vehicular
communication setting [2], in which cars will be able to communicate with each
other. This communication will be used for safety critical applications that require
high availability. For applications used in automotive traffic this is especially true
since application failure could affect driver behavior or directly affect the state of the
car, e.g., spurious application of brakes. Traditional solutions for high-availability rely
on redundancy offered by cluster implementations, in which Middleware services [1]
support the timely replication and fail-over in case of crash failures of individual

* This work was partially supported by the HIDENETs project (EU-IST-FP6-26979).

172 E.V. Matthiesen et al.

cluster nodes [7]. For stateful applications, such fail-over capability typically involves
timely replication of application state, which could be implemented by a redundant
distributed shared memory [5].

In mobile ad hoc networks (MANETs) the lifetime of a communication path may
be short [2]. Communication delays in principle are unbounded due to the
unpredictability of the Medium Access procedures on the link-layer and potential re-
routing delays in dynamic multi-hop scenarios [9]. Replication strategies for dynamic
data such as application state need to take these communication properties into
account [8]: Larger communication delays can increase the probability of inconsistent
replica state, so that dynamic cluster member selection can lead to substantial
improvements in mobile scenarios [12]. The replication manager (RM) defined in [3]
an example of such a middleware component that provides applications with a
resilient shared memory area and performs management of such a dynamic cluster.
Heuristic algorithms as investigated in [8], based on measured communication delays
and geographic positioning and speed information, can be utilized to trigger
membership reconfiguration in a mobile ad-hoc network setting.

In this paper, we evaluate the dependability of a replicated stateful application
service based on dynamic cluster formation as provided by the Replication Manager.
The metrics we evaluate are the number of participating nodes in the cluster, replica
data consistency, and application availability. The former can be an important metric
to improve client-access to the replicated service in delay-constrained scenarios, as
client-nodes can potentially select the server instance with shortest communication
delay to the clients [10]. Replica consistency is expressed as the number of nodes that
store the correct data, where correctness here refers to the real-time ordering of write
operations to the distributed memory area storing the changing application state.

Using numerical results from analytic Stochastic Petri Net models of this dynamic
replication scenario, we experiment with different geographic mobility types, and
different degrees of dynamicity of the application state [6].

The rest of the paper is organized as follows. Section 2 describes basic background
about: a) typical applications and use scenarios that illustrate the context of the study,
b) replication management and data consistency related problems and challenges, and
c) the main concepts behind the design of the replication manager investigated in this
paper. The dependability models of the replication manager allowing the assessment
of the probabilities characterizing the number of replica in the network and their
consistency are presented in Section 3. Numerical and sensitivity analysis results are
discussed in Section 4. Finally, Section 5 summarizes the main conclusions and
discusses future work.

2 Background

In this section we present necessary background information needed to understand the
scenarios investigated in this paper, both with respect to replication and vehicular ad-
hoc networks. First we describe the scenario and then we go into the problem of data
consistency in a distributed shared memory area and also the problems involved with
service replication in ad-hoc networks.

 Dependability Evaluation of a Replication Service for Mobile Applications 173

2.1 Scenario Description

Various applications in vehicular settings could benefit from the replication service
investigated in this paper [11]. We can consider as an example, an ad-hoc network
based road-traffic information service, whose information base is dynamically
updated. Utilizing the Replication Manager middleware service, the application state
(traffic information) is kept in a memory area which is shared among the participating
servers in the replica set. In case the network topology (connectivity graph) changes
significantly, e.g., when a server node is exiting the highway, the intra-cluster
communication with that node will experience increasing delays as the geographic
distance and eventually the multi-hop communication path length grows. As the
communication with a node deteriorates, the probability of an inconsistent application
state will increase.

The model presented in this paper and the sensitivity analysis results are intended
to quantify and investigate the impact of different traffic situations and dynamic
behaviors on the resulting application availability and the probability of state
inconsistency of the participating servers in replica set.

In a replication manager use case, three different nodes and roles can be
distinguished: user nodes, relay nodes and service nodes. The user nodes are the
clients of the application service which is provided by the service nodes. Although
different replica sets can co-exist and overlap, the subsequent discussions will without
loss of generality focus on a single replicated service instance. In order to start using
the replicated application service, the RM middleware will need to identify the
corresponding replica node set, e.g., via a dynamic naming service. Upon crash failure
of the service node or degraded/disconnected communication properties, the RM
service in the user node can failover to other service nodes in the replica group. Relay
nodes are network nodes that relay packets in the network in a multi-hop
communication scenario. In principle, all service nodes within the reach of the multi-
hop connectivity are eligible to act as application service replicas; however, in order
to limit communication delays between replica nodes, the communication path-
lengths may be bounded to a maximum hop-count H; in the extreme case H=1, only
direct neighbors (within link-layer connectivity) would be eligible to act as replicas.
Any replica node can modify the data in the shared memory area (e.g., in reaction to
processing requests by users).

In the rest of the paper we will refer to the maximum number of eligible replica
nodes in the network as n, and to the number of service nodes active in the replica
group as k.

2.2 Background on Data Consistency

Dynamic application state (as in the traffic information example) requires timely
update and replication of the stored data. The replication model used in the RM is a
simple shared memory area. As a node is taken into the replica group, it becomes
accessible as a server to the users. Consistent data replication implies that all updates
must have been received from all other nodes in the group before a node can be
considered consistent. A typical shared memory area involves locking mechanisms to
ensure that the memory is consistent at the time of a write operation. Locking or other

174 E.V. Matthiesen et al.

concurrency or consistency control mechanisms however require communication
overhead and cause additional delays. Furthermore, in scenarios of unbounded
communication delays and for short-lived connectivity relations, the design of such
mechanisms is very challenging. Due to the unreliability of the communication
channel in mobile ad-hoc networks we choose to design the RM with optimistic
replication and no concurrency control mechanisms. The sensitivity analysis provided
in this paper shows the feasibility of this approach and gives guidelines as to which
scenarios the RM will be able to provide a dependable dynamic shared memory area
to the application. Omitting concurrency control is a choice to reduce replication
overhead. The models presented in this paper show that replication is possible without
concurrency control under certain circumstances.

2.3 Replication Management Problems and Proposed Design Concepts

In a car-to-car ad-hoc network the topology may change so frequently that the amount
of signaling needed to keep a group of replicas consistent is potentially large [13].
The smaller the number of active replicas, the higher the unavailability of the
application service due to crash failures of the server (which is undistinguishable from
the server leaving the connected network). On the other hand service replication by
broadcasting state information to all nodes in the network will increase wireless
bandwidth consumption and may lead to congestion. The number of replicas to select
is hence a tradeoff between low overhead and availability. The design goal of the RM
is to provide services to the user with a high perceived quality of service, while
keeping replication and reconfiguration overhead as low as possible. Therefore we
have chosen to favor the tradeoffs that give the best perceived service to the user
node.

The metrics with the highest impact on user perceived quality of service are service
response time, service availability, and the correctness of the service [4]. Correctness
is influenced by the consistency of the replicated data. If a user is getting a service
which is provided based on out-of-date data the service is not correct. Incorrect
service influences the user’s perception of the service dependability. The faults that
affect the user perceived quality of service are closely related to the metrics already
described. For example packet loss or excess delay affects the timeliness of the
service and also the correctness. A lost update packet is extending the time where the
replica server is in an inconsistent state until a successful retransmission or a new
update message is received. The same is true for large delay. If a single server in the
group is experiencing these types of faults, it can be excluded from the group and a
new service node – if any eligible ones reachable in the network - can be included.
The replicas are selected in order to achieve stable clusters as this is preferred to
minimize reconfiguration overhead; see [1] for strategies to increase stability.

In summary the most important problems addressed by the RM are:

• Selection of replicas with stability criteria and best communication metrics.
• Reduction of reconfiguration overhead.
• Reduction of service response time.

Any node in the replica group can propose new group members; when a member is
proposed all existing members must acknowledge the adoption of the new members.

 Dependability Evaluation of a Replication Service for Mobile Applications 175

If the majority of the existing members accept the new group member by sending a
positive acknowledgement to the proposing node, the latter will send an updated
membership list to all nodes in the group and to all user nodes using the service
provided by the group. The user nodes need to get member updates in order to have
an up to date list of failover candidates in case they loose their connection with the
server they are already using. The state manager part of the replication manager is
responsible for sending update messages in case of a state change caused by a write
operation to the shared memory region, to store received state variables and to send an
acknowledgement when a state update message has been received. In this way the
write operation will be replicated to the other group members. The retrieval part is
responsible for selecting a server to be used by the user nodes in case they loose the
connection with the server they were already using. The retrieval part of the RM is
storing the updated list of group members and selects the failover server based on
communication metrics and geographic properties of the servers. Furthermore the
retrieval part of the RM is responsible for retrieving the state of the shared memory
area when a new service node joins the replica group.

3 Dependability Modeling for Replica Consistency

In this section, we present the methodology and the approach of our dependability
modeling. Moreover, the objective discussed in this section is to develop a method
and a model making it possible to evaluate quantitative measures characterizing the
consistency of the dynamic application state in the replica group. Markov chains and
generalized stochastic Petri nets (GSPNs) [15] are commonly used to perform
dependability evaluation studies and sensitivity analyses aimed at identifying
parameters having the most significant impact on the measures. When using
analytical techniques e.g., GSPNs and Markov chains, the system must be described
at a high level of abstraction. Simplified assumptions are generally needed to obtain
tractable models. Although simulation can be used to describe the system at a more
detailed level, it is more costly in terms of the processing time needed to obtain
accurate and statistically significant quantitative results.

This section develops GSPN models considering exponential assumptions for the
underlying stochastic processes. Although such assumptions may not faithfully reflect
reality, the results obtained from the models and sensitivity analysis give preliminary
indications and estimations about the expected behaviors and trends that can be
observed. More accurate results can be obtained considering more general distributions,
using for example Matrix-Exponential distributions [14] or non Markovian models.

In the following, we represent a generic GSPN model and the corresponding
Markov chains [5]. Then, we present the quantitative measures evaluated from the
models to assess the data consistency and application availability. Finally, we discuss
the main parameters that are considered in the sensitivity analysis.

3.1 GSPN Model for the Replica Consistency Estimation

Fig.1 represents the proposed GSPN model describing the potential evolution of
replication group size and inconsistency. The model has four input parameters. The

176 E.V. Matthiesen et al.

Fig. 1. GSPN model of network size n and replication group size k

first parameter denoted by α is the rate at which new eligible service nodes enter the
(multi-hop) communication range of the existing group. This parameter depends on
the geographic mobility model, the link-layer characteristics of the wireless
technology (e.g., expressed by a communication radius), and the criterion on
‘eligibility’ to act as cluster node, e.g., the max hop-count H of the multi-hop
connection. The second parameter, β, is the rate with which eligible service nodes
leave the connectivity range of the replica set; β is influenced by the same three
factors as stated above for α. The third parameter, γ, is the rate with which the state of
the application service changes. This change rate obviously depends on the applica-
tion type and the service usage scenario, hence may be influenced by the number of
client nodes. The fourth parameter, δ, is the rate that represents the network and
processing delay of an update message between replica nodes.

There are four main places in the Petri net; the two most important ones are labeled
IC and CO. IC and CO denote the number of inconsistent and consistent nodes in the
group, respectively. The top place GS is initially marked with a number of tokens
corresponding to the network size n, i.e., the maximum number of nodes of the
network. The initial marking of the place CG specifies the desired number of replica
in the group (k). The place X is a utility place that moves all tokens from CO to IC
and CG when the γ transition fires i.e., when the original data are updated. When
place X gets marked, we remove all the tokens found in place CO by activating t2.
When CO is empty, we remove all the tokens placed in place X by activating t1.
Transitions t1 and t2 are instantaneous whereas all the other transitions are
exponentially distributed timed transitions. It is important to note that the firing rates

 Dependability Evaluation of a Replication Service for Mobile Applications 177

Fig. 2. GSPN model of replication group with n=k

of transitions (δ) and (β) are weighted by the marking m(IC) and m(CO) of the input
places IC and CO, respectively.

The GSPN model of Fig.1 can be simplified when n=k. This is illustrated in Fig. 2.

3.2 Markov Model Derived from GSPN

The Markov models describing the evolution of replica group members and their
consistency are derived automatically from the corresponding GSPN models. For
example, the Markov model derived from the GSPN model depicted in Fig.3 with
n=k is given in Fig.4.

The Markov chain depicted in Fig.3 reflects an increasing number of replica group
members when moving to the right within the columns. The number of consistent
group members is depicted in the rows, increasing from top to bottom. Note that for
illustration purposes, a 3-dimensional state-space labeling is used; the third
component, the number of ‘free’ places in the replica set, is actually fully determined
by the first two components.

The state in the lower right hand side is the optimal state of the replica group, as
the maximum number n of consistent replica nodes is present. Fully consistent replica
groups (of not necessarily maximal size) are represented by the whole lower diagonal.

178 E.V. Matthiesen et al.

Fig. 3. Markov model of the GSPN model

The GSPN model of Fig.2 is generic and can be used to automatically generate the
Markov chain associated with any (n) group size. As an example, Fig.4 shows the
Markov chain representing replication consistency with n=k=2 as group size. The
arrow labels represent the rate of the corresponding transition; for instance, an arrow
labeled “β” represents the leaving rate of a node from a group, regardless of whether
this node is leaving because of a crash failure or another cause.

In the Markov model of Fig. 3, each state is labeled with three parameters (s, i, m)
where s denotes the group size, i denotes the number of inconsistent members and m
denotes the number of free places in the group, i.e., the number of members that can
still join the group. We distinguish three main sets of states:

• The states labeled “i=0” denote those where all members of group at certain
time are consistent.

 Dependability Evaluation of a Replication Service for Mobile Applications 179

Fig. 4. Markov model of the GSPN model for n=2

• The states labeled “s=n+1, m=0” represented in the last column denote those
where the system has no more free places and there are “s-i” members which
are consistent.

• The state labeled “n+1, 0, 0” denote that the system is saturated with the
maximum number of members and all are consistent.

From this model some interesting formulas can be derived; namely the probability
of all existing group members being consistent. In the figure, this is the probability of
the Markov chain being in any of the states in the lower diagonal of states. Using the
regular structure of the Markov chain, this probability can be found by the expression:

()() ()

()()
∑

= ++⎟
⎠
⎞

⎜
⎝
⎛ ∏∑

= +−

=

−+−

=

−

n

i k
in

k

iin

n

j
j

jnj
consP

1

1
1

1

11

0
!

)(
)(

γδβ

βαδ

βα (1)

The behavior of the size of the replica set (expressed by the first component, s, of
the state-space) is actually fully determined by the rates of arrivals and departures
from the group (α and β respectively). As this is a birth-death process, the probability
of a certain replica size is equivalent to the queue-length probability of an M/M/n/n
queuing system, which can be found in any standard queuing theory book to be [16]:

() ()∑∑
=

=

=

=
n

i

n
i

n

i
i

n

nP

Ci
ii

n

n

0

1

0
!

1!

),,(

! α
β

β
αβ

ααβ

(2)

Hereby,
)!!.(

!
ini

nn

iC −= denotes the binomial coefficients. Note that although Equation

(2) can be derived directly from a simple M/M/n/n model, this is not the case any

180 E.V. Matthiesen et al.

more for the more complex 2-dimensional Markov chain structure that lead to the
derivation of Eq. (1).

In Eq. (3) the service availability is calculated given that a specific user perceives a
specific server with the availability As.

A = P (i, β ,α) ⋅ (1 − (1 − As)i)
i=1

k

∑ (3)

Fig. 5. Markov model with network size n=5 and replica group k=2

Fig. 5 shows another example with n=5 and k=2. The number of reachable
neighbors is given by (n-k). In the first part of the figure, the group is being
established by nodes entering the network. The part marked as the group being full is
added to make the model reflect better the dynamics of a fixed maximum size group,
being maintained in a variable size connected vehicular ad-hoc network. In this part
of the model nodes from the known neighborhood of the replica group are used as
replacements when a node leaves the group.

4 Results

This section presents some numerical results for sensitivity analysis for the
probabilities derived in Eq. (1), Eq. (2) and Eq. (3). We first discuss the values
assigned to the parameters of the models and then present some results illustrating the
behavior of the probabilities characterizing the inconsistency among group replica,
the probability of reaching the maximum group size, and the service availability.

 Dependability Evaluation of a Replication Service for Mobile Applications 181

4.1 Parameter Values

Naturally there are constraints on the rates used in the model if the resulting numbers
should show results of realistic scenarios. For instance the update rate is used to
represent the end-to-end delay of the network between the nodes in the group. There
is a theoretical minimum to this delay which is the time it takes to transfer one update
message to a link-layer neighbor. Assuming that one update message can be sent
within 50ms under good conditions (one hop, no MAC delay) the corresponding
update rate will be around δ=1200/minute. To analyze the impact of this parameter on
the results, two different values of δ are considered: 1000 and 100 per minute. The
order of magnitude of the data change rate γ depends on the considered application.
Two different values of this parameter have been considered for the results presented
in this section: 10 and 100 per minute, corresponding to an average time between two
consecutive updates of 6 sec. and 600 msec. respectively.

As regards the rate α of meeting new cars that are able to join the group, we have
also considered different values corresponding to different traffic situations. The
minimum rate is zero meaning not meeting any cars at all on the road. An example of
value of the rate α is 30/sec which is approximately equivalent to cars, with the length
of 5 meters, driving in opposite directions with a speed of 200 km/h with little or no
space between the cars. This value could be much higher when considering multi-hop
communication. Various values for the leaving rate β can also be considered to reflect
different behaviors of the participating nodes. This value is also difficult to estimate
because it depends on several influencing factors.

Rather than focusing on the absolute values of α and β, one can analyze the results
by considering the relative ratio α/β. Higher values of this ratio correspond to
environments where the probability of meeting a new car is higher than the
probability that a participating node will leave the network. In a freeway scenario
where cars join and leave the road via on and off-ramps and cars travel with a mean
speed of 130 km/h excluding trucks the rate of cars joining the group is quite low
because the cars travel with approximately the same speed. Assuming three cars
joining the group per minute gives a join rate of 3/minute. With an assumption that
each car stays in the group on average for 3 minutes the actual leave rate is
β=0.33/minute. Accordingly the ratio α/β will be around 10. Much higher values can
be obtained for other scenarios.

To summarize the settings of the parameters α, β, δ, and γ that represent the range
of values expected to be found using measurements from vehicular networks would
be as presented in Table 1.

Table 1. The maximum and minimum values for each parameter

Parameter α β γ δ
Min 0 0 10 100
Max 10000 10000 100 1000

182 E.V. Matthiesen et al.

4.2 Sensitivity Analyses for Replica Consistency

Fig. 6 plots some numerical results obtained by Eq. (2). As expected, it is shown that
it is harder to reach the maximum group size for larger groups. If more members are
needed to form a full group it is more difficult to do that given a constant arrival of
new possible group members. The probability plotted in Fig.6 is only affected by the
values of α and β that characterize the dynamics of the network; the higher the value

of the ratio α/β, the closer the probability of reaching the maximum group size gets to
the value 1. Also, it can be seen that this probability is very sensitive to the value of
α/β when this ratio is relatively low (less than 102 in the example setting).

Fig. 6. Probability of presence of maximum group size n=k

As regards the replicas consistency, Figure 7 shows that the probability of a
consistent replica set converges rather fast to a limit value for increasing α/β. This
limit value depends strongly on the relation of the application state change, γ, and the
network delay rate, δ. This is intuitive too, since timely updates are needed to achieve
consistent replica groups.

Figure 7 shows the combined impact of parameters γ and δ on the consistency
probabilities. It can be seen that a decrease of δ of one order of magnitude (from 1000
to 100), could lead to a degradation of the consistency probability in the order of 4 to
9 times, depending on the considered values for the ratio α/β and the value of γ. Also,
for α/β values higher than 10, the higher the ratio δ/γ the higher the consistency
probability.

 Dependability Evaluation of a Replication Service for Mobile Applications 183

Fig. 7. Probability of having a fully consistent group for n=k=5

Considering the behavior of the consistency probability as a function of the replica
group size, Fig.8 shows that for traffic situations corresponding to small values of the
ratio α/β (e.g., in highway systems) the probability of achieving a full replica group is
reduced significantly when the desired group size grows. For the desired group size of
k=7 in a network with n=7 nodes the ratio between α and β must be larger than 3 to
get a probability of more than 80% of achieving a full replica group. The above
estimates of input values (α/β ≤ 3), the probability to fill up groups larger than k=5
nodes decreases.

With respect to the probability of all replicas being consistent the probability is
high even with the ratio between γ and δ being as low as 10, the probability of having
consistent replicas is about 80%. Citing the limits given above in Table 1, when
considering the extreme high rates and the extreme low rates, the ratio between both γ
and δ is equal to 10. Overall the probability of achieving consistent replica group
members is high when the network is fast and not congested. Furthermore the data
change rate γ must be considerably lower than the update transmission rate.

184 E.V. Matthiesen et al.

Fig. 8. Probability of reaching different maximum group size k with n=7

Fig. 9. Service availability vs. group consistency for different group sizes

 Dependability Evaluation of a Replication Service for Mobile Applications 185

4.3 Service Availability Analyses

Considering the analytical expression given by Eq. (3) and assuming that each server
node in a group has an availability As=0.6. Figure 10 shows the service availability
for two different settings of α, β, γ , δ. In the first setting, the parameters are set as
follows: α=5, β=1, δ=100, γ=10. In the second setting the parameters are set as
follows: α=10, β=1, δ=100, γ=20. From the figure it shows that there is a tradeoff
between service availability and service correctness (here measured through data
consistency). In Figure 9, n=k and it goes from 1 to 20 along the x-axis. It appears
that, for the considered numerical values, the best group size providing the best
tradeoff between availability and correctness is 3 to 4 servers.

5 Conclusion and Outlook

In this paper, we have presented an analytical modeling study based on stochastic
Petri nets and Markov chains that allowed us to analyze the behavior of a replication
middleware service in ad-hoc based dynamic environments, considering quality of
service and dependability related metrics. The main metrics concern the probability of
having consistent replicas, the probability of reaching the maximum group size, and
service availability. In particular, we carried out several sensitivity analysis studies to
see how data consistency is affected in a broad range of scenarios. We can see that the
probability to achieve a full group decreases significantly for group sizes with four or
more replicas per group. Even though the group will not grow to its full size, the
probability of having consistent replicated data is above 80% in case that the update
rate is more than ten times faster than the data change rate. Recall that the data change
rate represents the time between two data change events and the update rate represents
the time it takes to send an update message to the replica node. With a replica group
size of three the probability of reaching a full replica group is almost 50% higher
when α is 100 times bigger than β.

Moreover we have shown that as service availability increases with a higher
number of replicas, the service correctness starts to decrease if the group size goes
beyond 4 servers.

The model presented in this paper assumes perfect replica selection and no
signaling overhead when exchanging servers in the replica groups. This assumption is
limiting the precision of the model but the trends shown in the results section in this
paper are valid but optimistic with respect to the level of inconsistency. Another
limitation of the model is that it does not consider events like network congestion. In
a sense network failures and congestion events can be considered as an increase in the
β parameter. The selection parameters and algorithms that should be used to select
appropriate replica servers are developed in order to ensure maximum stability in the
selected replica peers. The exact amount of signaling overhead involved in keeping
the participating server nodes and the user nodes up to date on the current group
member list is left for future studies.

186 E.V. Matthiesen et al.

References

[1] SAF, Service Availability Forum, http://www.saforum.org
[2] Artimy, M.M., Robertson, W., Phillips, W.J.: Connectivity in inter-vehicle ad hoc

networks, Faculty of engineering, Dalhouse University (2004)
[3] HIDENETs, Highly Dependable ip-based networks and services, in Project Deliverable

D1.2, IST-FP6-STREP-26979 (June 2003)
[4] Avizienis, A., Laprie, J.-C., Randell, B., Landwehr, C.: Basic concepts and taxonomy of

dependable and secure computing. IEEE Transactions on Dependable and Secure
Computing 1, 11–33 (2004)

[5] Bozinovski, M., Schwefel, H.-P., Prasad, R.: Algorithm for Controlling Transaction
Consistency in SIP Session Control Systems. IEE Electronics Letters 40, 209–211 (2004)

[6] Camp, T., Boleng, J., Davies, V.: A survey of mobility models for ad hoc network
research. In: Wireless Communications and Mobile Computing (WCMC) (2002)

[7] Chen, I.-R., Baoshan, G., George, S., Sheng-Tzong, C.: On failure recoverability of
client-server applications in mobile wireless environments. IEEE Transactions in
Reliability 54, 115–122 (2005)

[8] Matthiesen, E.V., Renier, T., Schwefel, H.-P.: A new selection metric for backup group
creation in inter-vehicular networks. In: 16th IST Mobile and communications summit
(2007)

[9] Chen, Z.D., Kung, H., Vlah, D.: Ad hoc relay wireless networks over moving vehicles on
highways. In: MobiHoc 2001: Proceedings of the 2nd ACM international symposium on
Mobile ad-hoc networking & computing, pp. 247–250. ACM Press, New York (2001)

[10] Hansen, M.B., Olsen, R.L., Schwefel, H.-P.: Probabilistic models for access strategies to
dynamic information elements. Performance Evaluation (to appear)

[11] Helal, A., Heddaya, A., Bhargava, B.: Replication Techniques in Distributed Systems.
Kluwer Academic Publishers, Dordrecht (1996)

[12] Olesen, R.L., Hansen, M.B., Schwefel, H.-P.: Quantitative analysis of access strategies to
remote information in network services. In: Global Telecommunications Conference,
GLOBECOM - IEEE (2006)

[13] Killijian, M.-O., Powell, D., Banâtre, M., Couderc, P., Roudier, Y.: Collaborative Backup
for Dependable Mobile Applications. In: Proc. of 2nd Int. Workshop on Middleware for
Pervasive and Ad-Hoc Computing (Middleware 2004), October 2004, pp. 146–149
(2004)

[14] Cox, D.R., Miller, H.D.: The Theory of Stochastic Processes. Chapman and Hall, Boca
Raton (1965)

[15] Marsan, M.A., Balbo, G., Conte, G., Donatelli, S., Franceschinis, G.: Modeling with
Generalized Stochastic Petri Nets. John Wiley & Sons, Chichester (1995)

[16] Bolch, G., Greiner, S., de Meer, H., Trivedi, K.S.: Queuing Networks and Markov
Chains. Wiley, Chichester (2006)

Ten Fallacies of Availability and Reliability

Analysis

Michael Grottke1, Hairong Sun2, Ricardo M. Fricks3, and Kishor S. Trivedi4

1 University of Erlangen-Nuremberg, Department of Statistics and Econometrics
Lange Gasse 20, D-90403 Nürnberg, Germany
Michael.Grottke@wiso.uni-erlangen.de

2 Sun Microsystems, 500 Eldorado Blvd, Broomfield, CO 80021, USA
Hairong.Sun@sun.com

3 Motorola Inc., 1501 West Shure Drive, Arlington Heights, IL 60004, USA
Ricardo.Fricks@motorola.com

4 Duke University, Department of Electrical and Computer Engineering
Box 90291, Durham, NC 27708, USA

kst@ee.duke.edu

Abstract. As modern society becomes more and more dependent on
computers and computer networks, vulnerability and downtime of these
systems will significantly impact daily life from both social and economic
point of view. Words like reliability and downtime are frequently heard
on radio and television and read in newspapers and magazines. Thus
reliability and availability have become popular terms. However, even
professionals are in the danger of misunderstanding these basic concepts.
Such misunderstandings can hinder advances in designing and deploying
high-availability and high-reliability systems.

This paper delves into ten fallacious yet popular notions in availability
and reliability. While the discussions on the first five fallacies clarify
some misconceptions among reliability engineers working on modeling
and analysis, the remaining five fallacies provide important insights to
system engineers and companies focusing on system level integration.

1 Prologue

It is hard to discuss the reliability and availability concepts without first consid-
ering the lifetime of components and systems. We will mainly refer to systems
in the explanation to follow but the same concepts will equally apply to com-
ponents or units. In this section we review basic definitions that baseline our
presentation to follow.

1.1 Basic Probability Theory Definitions

The lifetime or time to failure of a system can usually be represented by a random
variable due to the intrinsic probabilistic nature of events that lead to system
malfunction. Let the random variable X represent the lifetime or time to failure

T. Nanya et al. (Eds.): ISAS 2008, LNCS 5017, pp. 187–206, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

188 M. Grottke et al.

of a system. The continuous random variable X can be characterized by the (cu-
mulative) distribution function (CDF) F (t), the (probability) density function
(PDF) f(t), or the hazard (rate) function h(t), also known as the instantaneous
failure rate. The CDF represents the probability that the system will fail before
a given time t, i.e.,

F (t) = Pr(X ≤ t). (1)

The PDF describes the rate of change of the CDF, i.e.,

f(t) =
dF (t)

dt
= lim

Δt→0

Pr(t < X ≤ t + Δt)
Δt

. (2)

Hence, f(t)Δt is the limiting (unconditional) probability that a system will fail
in the interval (t, t + Δt]. However, if we have observed the system functioning
up to some time t, we expect the conditional probability in the interval to be
different from f(t)Δt. This leads us to the notion of the instantaneous failure
rate, or the hazard rate function,

h(t) = lim
Δt→0

Pr(t < X ≤ t + Δt | X > t)
Δt

=
f(t)

1 − F (t)
. (3)

Thus, h(t)Δt represents the conditional probability that a system surviving to
age t will fail in the interval (t, t+Δt]. Applied to a large population of systems,
this conditional probability is the proportion of the survivors at time t that die
during the immediately following small interval of time Δt.

The three functions F (t), f(t) and h(t) are interrelated as shown in Table 1.

Table 1. Interrelationships between functions related to the lifetime distribution

f(t) dF (t)
dt

h(t)e−
� t
0 h(τ)dτ

� t

0 f(τ)dτ F (t) 1 − e−
� t
0 h(τ)dτ

f(t)� ∞
t

f(τ)dτ

dF (t)/dt
1−F (t) h(t)

Any of these three functions can uniquely describe the lifetime distribution.
For instance, if the time to failure of a system follows an exponential distribution
with parameter λ then

F (t) = 1 − e−λt, (4)

f(t) =
d

dt

(
1 − e−λt

)
= λe−λt, (5)

h(t) =
λe−λt

1 − [1 − e−λt]
= λ (6)

Ten Fallacies of Availability and Reliability Analysis 189

for t ≥ 0. Observe that the hazard rate function h(t) shows that the exponential
lifetime distribution is characterized by the age-independent failure rate λ. As
a matter of fact, the exponential distribution is the only continuous probability
distribution having a hazard function that does not change over time.

Therefore, whenever people refer to a lifetime distribution with constant fail-
ure rate, they are implicitly establishing the exponential distribution for the
system lifetime.

1.2 Reliability Definitions

Recommendation E.800 of the International Telecommunications Union (ITU-
T) defines reliability as the “ability of an item to perform a required function
under given conditions for a given time interval.” Therefore, for any time interval
(z, z + t] reliability R(t | z) is the probability that the system does not fail in
this interval, assuming that it is working at time z. Of specific interest are
the intervals starting at time z = 0; reliability R(t) := R(t | 0) denotes the
probability that the system continues to function until time t. If the random
variable X represents the time to system failure as before, then

R(t) = Pr(X > t) = 1 − F (t), (7)

where F (t) is the system lifetime CDF.
Closely related to the reliability R(t) is the definition of mean time to failure

(MTTF). System MTTF is the expected time that a system will operate before
the first failure occurs; i.e., on the average, a system will operate for MTTF
hours and then encounter its first failure. The average of the system’s lifetime
distribution E[X] is

E[X] =
∫ ∞

0
tf(t)dt =

∫ ∞

0
R(t)dt, (8)

provided this integral is finite. If the right-hand side is not absolutely convergent,
then E[X] does not exist. Therefore, system MTTF can be computed by first
determining its corresponding reliability function R(t) and then applying (8).
For example, if the system lifetime is exponentially distributed with failure rate
λ then

R(t) = 1 −
(
1 − e−λt

)
= e−λt (9)

and
MTTF =

∫ ∞

0
e−λtdt =

1
λ

. (10)

1.3 Availability Definitions

Availability is closely related to reliability, and is defined in ITU-T Recommen-
dation E.800 as the “ability of an item to be in a state to perform a required
function at a given instant of time or at any instant of time within a given time
interval, assuming that the external resources, if required, are provided.”

190 M. Grottke et al.

An important difference between reliability and availability is that reliability
refers to failure-free operation of the system during an interval, while availability
refers to failure-free operation of the system at a given instant of time.

Like in the case of reliability, we can restate the availability definition with
the assistance of random variables. Let Y (t) = 1 if the system is operating at
time t, and 0 otherwise. The most straightforward measure of system availability
is the instantaneous availability A(t), which is the probability that the system is
operating correctly and is available to perform its functions at a specified time
t, i.e.,

A(t) = Pr(Y (t) = 1) = E[Y (t)]. (11)

The instantaneous availability is always greater than or equal to the reliability;
and in the absence of repairs or replacements, the instantaneous availability A(t)
is simply equal to the reliability R(t) of the system.

Given A(t) we can define the (steady-state) availability A of the system as

A = lim
t→∞A(t). (12)

The steady-state availability, or simply availability, represents the long-term
probability that the system is available. It can be shown that the steady-state
availability is given by

A =
MTTF

MTTF + MTTR
, (13)

where the system mean time to repair (MTTR) is the average time required
to repair system failures, including any time required to detect that there is a
failure, to repair it, and to place the system back into an operational state; i.e.,
once the failure has occurred, the system will then require MTTR hours on the
average to restore operation. It is known that the limiting availability depends
only on the mean time to failure and the mean time to repair, and not on the
nature of the distributions of failure times and repair times. There is an implied
assumption in this model that repairs can always be performed which will restore
the system to its best condition (“as good as new”).

If the system lifetime is exponential with failure rate λ, and the time-to-repair
distribution of the system is exponential with (repair) rate μ, then (13) can be
rewritten as

A =
μ

λ + μ
. (14)

Another concept of interest is the interval (or average) availability AI(t) of the
system given by

AI(t) =
1
t

∫ t

0
A(τ)dτ. (15)

The interval availability AI(t) is the expected proportion of time the system is
operational during the period (0, t]. A property that can easily be verified if we
represent the total amount of system uptime during (0, t] by the random variable
U(t) is the following one:

AI(t) =
1
t

∫ t

0
E[Y (τ)]dτ =

1
t
E[U(t)]. (16)

Ten Fallacies of Availability and Reliability Analysis 191

The limiting average availability AI is the expected fraction of time that the
system is operating:

AI = lim
t→∞AI(t). (17)

If the limit exists, then the steady-state and the limiting average availabilities
are the same [1,2]; i.e.,

AI = lim
t→∞

1
t

∫ t

0
A(τ)dτ = A. (18)

2 Fallacies

2.1 “Fault Tolerance Is an Availability Feature and Not a
Reliability Feature”

This fallacy comes from the misunderstanding of the reliability definition. The
statement “the system continues to function throughout the interval (0, t]” does
not imply the absence of internal system faults or error conditions during the
interval (0, t]. Failure and recovery at component level is allowed as long as the
system continues to function throughout the interval (0, t]. A simple example is
Redundant Array of Independent (or Inexpensive) Disks (RAID) [3]. For RAID
1-5, it stores redundant data in different places on multiple hard disks. By placing
data on multiple disks, I/O operations can overlap in a balanced way, improving
performance and also increasing fault-tolerance.

Figure 1 is the state-transition diagram of a continuous-time Markov chain
(CTMC) modeling the failure/repair behavior of a RAID 5 system. State 0
represents the state that all the N disks in the parity group are working, state
1 represents the failure of one disk. The parity group fails (data is lost) when
there are double disk failures. The failure rate and repair rate for a disk are λ
and μ, respectively.

N N

210

μ

λ (−1)λ

Fig. 1. CTMC for RAID 5 with N disks

Solving the CTMC model, it can be shown that the system reliability in the
interval (0, t] is given by [4]

R(t) =
N(N − 1)λ2

α1 − α2

(
e−α2t

α2
− e−α1t

α1

)

, (19)

where

α1, α2 =
(2N − 1)λ + μ ±

√
λ2 + 2(2N − 1)λμ + μ2

2
. (20)

192 M. Grottke et al.

From these expressions, the mean time to reach the absorbing state 2 (i.e., the
system MTTF) is derived as

MTTF =
2N − 1

N(N − 1)λ
+

μ

N(N − 1)λ2 . (21)

If the MTTF of a disk is λ−1 = 20 years [5], and the MTTR is μ−1 = 20 hours,
using RAID 5 to add parity in a rotating way, the MTTF of the parity group
with N = 6 disks will be 5, 847.333 years.

In a system without repair (i.e., μ = 0) the time to failure follows a two-
stage hypoexponential distribution with transition rates Nλ and (N − 1)λ. The
reliability function is then

R(t) =
N(N − 1)λ2

Nλ − (N − 1)λ

(
e−(N−1)λt

(N − 1)λ
− e−Nλt

Nλ

)

= Ne−(N−1)λt − (N − 1)e−Nλt, (22)

and the MTTF amounts to

MTTF =
1

Nλ
− 1

(N − 1)λ
=

2N − 1
N(N − 1)λ

. (23)

For our RAID 5 example with parameter values given above follows a system
MTTF of about 7.333 years, which is considerably less than the system MTTF
in the presence of repair, and it is even less than the MTTF of a single disk;
this stresses the importance of combining redundancy with effective and efficient
repair.

However, we have seen that in the presence of adequate repair fault tolerance
can improve system reliability. It is thus not only an availability feature, but
also a reliability feature.

2.2 “Availability Is a Fraction While Reliability Is Statistical”

This statement seems to imply that availability is a deterministic concept, while
reliability is a random quantity. In fact, as can be seen from (7), for a given
time t reliability R(t) is a fixed probability that depends on the distribution
of the time to failure. Of course, the parameters of this distribution - or even
the type of distribution - may be unknown; then the reliability needs to be
estimated from measured data. For example, assume that we observe m new
(or “as good as new”) copies of the same system throughout the time interval
(0, t]. If xt of these copies do not fail during the observation period, then we
can give a point estimate of R(t) as the fraction xt/m. Note that the number
of non-failing copies Xt is random; therefore, the estimator R̂(t) = Xt/m is also
a random variable. As a consequence, the point estimate xt/m can be far from
the true reliability R(t); instead of merely calculating such a point estimate, it
is therefore advisable to derive a confidence interval. Based on the fact that Xt

Ten Fallacies of Availability and Reliability Analysis 193

follows a binomial distribution with size m and success probability R(t), it can
be shown [6] that [(

1 +
m − xt + 1

xtf2xt,2(m−xt+1);α

)−1

; 1

]

(24)

is the realized upper one-sided 100(1 − α)% confidence interval for R(t), where
the expression f2xt,2(m−xt+1);α denotes the (lower) 100α%-quantile of the F -
distribution with 2xt numerator degrees of freedom and 2(m − xt + 1) denom-
inator degrees of freedom. This means that if we repeat the experiment (of
observing the number of non-failing systems among a set of m until time t) very
often, then about 100(1 − α)% of the confidence intervals constructed based on
the respective measured values of xt will contain the true but unknown reliability
R(t). Note that the estimator and the confidence interval given above are valid
regardless of the distribution of the time to failure. As an example, assume that
we observe 100 new copies of a system for 10 hours each. If one of them fails,
then we estimate the reliability in the time interval (0; 10 hr] to be 0.99, while
the realized upper one-sided 95% confidence interval is given by [0.9534; 1].

Similarly, the steady-state availability A can be estimated as follows. We can
for example measure n consecutive times to failure (Y1, . . . , Yn) and times to
repair (Z1, . . . , Zn) of a system in steady-state. All times to failure and times
to repair, as well as the total up-time Un =

∑n
i=1 Yi and the total downtime

Dn =
∑n

i=1 Zi are random variables. Based on the values un and dn actually
observed, an obvious choice for a point estimate of steady-state availability is
Â = un/(un + dn). Again, it is possible to derive a confidence interval. If all
Yi and Zi are exponentially distributed with rate λ and μ, respectively, then
2λUn/(2μDn) follows an F -distribution with 2n numerator degrees of freedom
and 2n denominator degrees of freedom. Therefore, the realized upper one-sided
100(1 − α)% confidence interval for steady-state availability A is given by [4]

[(

1 +
dn

unf2n,2n;α

)−1

; 1

]

. (25)

For example, if we have 10 samples of failures and repairs, and the total up time
and total down time are 9990 hours and 10 hours, respectively, then the point
estimate of availability is 0.999. Assuming that both the time to failure and the
time to repair follow exponential distributions, the realized upper one-sided 95%
confidence interval is [0.9979; 1].

This availability inference process is not always feasible since the system
MTTF of commercial systems such as the ones supporting most computing and
communications systems is of the order of months to years. So, a more practical
approach aims at estimating the interval availability AI(t) for the interval (0, t]
with fixed length t (e.g., a week or a month) instead. One possible approach
is to observe m statistically identical new (or “as good as new”) copies of the
system during the time interval (0, t]. For each copy i = 1, . . . , m, the total down-
time di(t) (realization of the random variable Di(t)) in the observation interval
is recorded. Alternatively, we could observe the same system for m periods of

194 M. Grottke et al.

fixed duration t, provided that it is as good as new at the beginning of each of
these periods. The random variables Di(t) would then represent the downtime
of the system in the ith observation period, while di(t) is the actual downtime
experienced in this period.

Since the individual downtimes Di(t) are identically distributed random vari-
ables, the sample mean

D̄(t) =
1
m

m∑

i=1

Di(t) (26)

has an expected value that is equal to the true but unknown expected downtime
in the interval (0, t]. We can therefore use the average of the observed downtimes
to compute a point estimate of the system interval availability AI(t):

ÂI(t) =
t − 1

m

∑m
i=1 di(t)
t

= 1 −
∑m

i=1 di(t)
m · t

. (27)

If the individual downtimes Di(t) are independent, then the Central Limit The-
orem [4] guarantees that for large sample sizes m the sample mean D̄(t), (26),
approximately follows a normal distribution. This fact can be used for deriving
an approximate confidence interval to the interval availability estimate.

As the observation period t increases, the interval availability estimated using
(27) will eventually converge to the true steady-state availability A of the system,
i.e.,

lim
t→∞ ÂI(t) = A. (28)

Simulation experiments in [7] show that it is possible to produce a steady-state
availability estimate with an efficient confidence interval based on a temporal
sequence of interval availability estimates. This technique does not depend on
the nature of the failure and repair time distributions.

All this shows the similarities between reliability and availability from a sto-
chastic point of view: Both reliability and availability are fixed but unknown
values; they can be estimated by fractions; the estimators are random variables;
and based on the distributions of these random variables, we can come up with
expressions for constructing confidence intervals.

2.3 “The Term ‘Software Reliability Growth’ Is Unfortunate:
Reliability Is Always a Non-increasing Function of Time”

This fallacy is caused by the fact that reliability R(t | z), the probability of no
failure in the time interval (z, z + t], can be considered as a function of interval
length t, or as a function of interval start time z.

The latter aspect is often forgotten due to the importance of the reliability
function R(t) := R(t | 0) referring to the reliability in the interval (0, t]. By
integrating both sides of (3) we get

∫ t

0
h(τ)dτ =

∫ t

0

f(τ)
1 − F (τ)

dτ =
∫ t

0

−∂R(τ)/∂τ

R(τ)
dτ ; (29)

Ten Fallacies of Availability and Reliability Analysis 195

using the boundary condition R(0) = 1, this yields [4]

R(t) = e−
� t
0 h(τ)dτ . (30)

Since the hazard function h(t) is larger than or equal to zero for all t > 0, R(t)
is always a non-increasing function of t. This result is reasonable: If the time
interval examined is extended, then the probability of experiencing a failure
may be higher, but it cannot be lower.

However, if the interval length t considered is set to a fixed value, say t0,
while the interval start time z is allowed to vary, then reliability R(t0 | z) can be
a decreasing, constant, or increasing function of z. Software reliability growth
models describe how the failure generating process evolves as testing and de-
bugging proceed. Almost all of them assume that R(t0 | z) will eventually be a
non-decreasing function of z; hence the term “software reliability growth.”

For example, in the important class of non-homogeneous Poisson process mod-
els, the instantaneous failure rate of the software is a mere function of time and
does not depend on the number of faults discovered so far, etc. It can be shown
that according to these models the reliability R(t | z) is given by [8]

R(t | z) = e−
�

z+t
z

h(τ)dτ ; (31)

in this context, the function h(t) is often called “program hazard rate.” Obvi-
ously, (31) includes (30) as the special case z = 0. Regardless of the value of z,
R(t | z) is always a non-increasing function of t, starting out at R(0 | z) = 1.
However, there will eventually be software reliability growth in the sense de-
scribed above if and only if the instantaneous failure rate is eventually a non-
increasing function of time. Figure 2 illustrates these aspects based on a so-called
S-shaped software reliability growth model, featuring an instantaneous failure
rate that is first increasing (e.g., due to learning effects on part of the testers)
and then decreasing (because the software quality improves). The strictly de-
creasing function R(t | 0) is depicted in the left diagram. For the arbitrarily
chosen interval length t0, the right diagram shows that R(t0 | z) as a function
of z first decreases and then increases.

Thus, the term “software reliability growth” is correct, as it refers to the fact
that the probability of no failure occurrence in a time interval of fixed length
tends to be higher if the interval start time is increased.

2.4 “MTTF Is the Whole Story about Reliability”

This misconception is probably due to the fact that simple system reliability and
availability (R&A) models often assume that the time to failure of individual
components follows an exponential distribution. As we have seen in Section 1.1,
the only parameter of this distribution is the constant failure rate λ, which
according to (10) is the reciprocal value of the MTTF. Therefore, if we know
that the time to failure is exponentially distributed, then this piece of information
plus the MTTF indeed completely describe the distribution of the time to failure

196 M. Grottke et al.

t

t0

0
R

 (
t 0

| 0
)

1
R (t | 0) as a function of t

z

0
R

 (
t 0

| 0
)

1

R (t0 | z) as a function of z

Fig. 2. Reliability R(t | z) as functions of t and z

and hence the reliability function R(t). However, it needs to be stressed that the
distribution of the time to failure is never fully specified by its expected value,
the MTTF, alone; we always need at least additional information about the
type of distribution. Unfortunately, the exponential distribution assumption is
sometimes not stated explicitly.

Even if the time to failure is assumed to follow a more complex distribution,
the MTTF can suffice as an additional piece of information. For example, a
two-stage Erlang distribution [4] features an increasing failure rate, but like the
exponential distribution it only has one parameter, λ. From a given MTTF, the
value of this parameter can be derived as λ = 2

MTTF .
Note that for distributions with more than one parameter, information on the

type of distribution and the MTTF will not be enough for completely specifying
the distribution - information about additional moments of the distribution (or
about its additional parameters) will be needed. For example, if the time to
failure is known to follow a k-stage Erlang distribution (where k is unknown),
then in addition to the MTTF we would require further information, like the
variance of the time-to-failure distribution Var.TTF, in order to derive the two
model parameters λ = MTTF

Var.TTF and k = MTTF · λ = MTTF2

Var.TTF .
The fact that the MTTF by itself does not completely specify the time-to-

failure distribution also means that decisions based on the MTTF alone can
be wrong. As an illustration, consider the analysis of triple modular redundant
(TMR) systems. The TMR technique is widely adopted in the design of high-
reliability systems. Since two of the three components present in a TMR system
need to function properly for the system to work, the reliability of such a system
is [4]

R(t) = 3R2
u(t) − 2R3

u(t), (32)

where Ru(t) represents the reliability of any of the three statistically identical
components. If the time to failure of each component follows an exponential

Ten Fallacies of Availability and Reliability Analysis 197

distribution with reliability function given by (9), then we get

R(t) = 3e−λt − 2e−λt. (33)

It can be shown that R(t) > Ru(t) for t < t0 ≡ ln(2)/λ. Therefore, the TMR
type of redundancy clearly improves reliability for a mission time that is shorter
than t0. However, the MTTF of the TMR system,

MTTF =
∫ ∞

0
3e−λtdt −

∫ ∞

0
2e−λtdt =

3
2λ

− 2
3λ

=
5
6λ

, (34)

is smaller than 1/λ, the component MTTF. Based on the MTTF alone, a system
designer would always favor the single component over the TMR system; as we
have seen, this decision is wrong if the mission time is shorter than t0.

Therefore, MTTF is not the whole story about reliability. It does not suffice
to fully specify the time-to-failure distribution; decisions based on the MTTF
alone can thus be wrong.

2.5 “The Presence of Non-exponential Lifetime or Time-to-Repair
Distributions Precludes Analytical Solution of State-Space
Based R&A Models”

One common misconception is that analytic solutions of state-space based R&A
models are only feasible if all modeled distributions are exponential or geometric
in nature; if that is not the case, simulation modeling is the only viable alterna-
tive. This assertion could not be further from the truth given the rich theory of
non-Markovian modeling.

Markov models have often been used for software and hardware performance
and dependability assessment. Reasons for the popularity of Markov models
include the ability to capture various dependencies, the equal ease with which
steady-state, transient, and cumulative transient measures can be computed,
and the extension to Markov reward models useful in performability analysis
[9]. For example, Markov modeling is quite useful when modeling systems with
dependent failure and repair modes, as well as when components behave in a
statistically independent manner. Furthermore, it can handle the modeling of
multi-state devices and common-cause failures without any conceptual difficulty.

Markov modeling allows the solution of stochastic problems enjoying the prop-
erty: the probability of any particular future behavior of the process, when its
current state is known exactly, is not altered by additional knowledge concern-
ing its past behavior. For a homogeneous Markov process, the past history of
the process is completely summarized in the current state. Otherwise, the exact
characterization of the present state needs the associated time information, and
the process is said to be non-homogeneous. Non-homogeneity extends the ap-
plicability of Markov chains by allowing time-dependent rates or probabilities to
be associated to the models. For instance, in case of a non-homogeneous CTMC,
the infinitesimal generator matrix Q(t) = [qij(t)] is a function of time. This im-
plies that the transition rates qij(t) and qii(t) = −

∑
j �=i qij(t) are also functions

of t.

198 M. Grottke et al.

A wide range of real dependability and performance modeling problems fall
in the class of Markov models (both homogeneous and non-homogeneous). How-
ever, some important aspects of system behavior in stochastic models cannot
be easily captured through a Markov model. The common characteristic these
problems share is that the Markov property is not valid (if valid at all) at all
time instants. This category of problems is jointly referred to as non-Markovian
models and include, for instance, modeling using phase-type expansions, sup-
plementary variables, semi-Markov processes (SMPs), and Markov regenerative
processes (MRGPs). For a recent survey, see [10].

Thus, state-space based R&A models can be solved analytically, even if life-
time or time-to-repair distributions are non-exponential.

2.6 “Availability Will Always Be Increased with More Redundancy”

In a perfect world, availability increases with the degree of redundancy. However,
if coverage ratio and reconfiguration delay are considered, availability does not
necessarily increase with redundancy [11].

Assume there are n processors in a system and that at least one of them is
needed for the system being up. Each processor fails at rate λ and is repaired
at rate μ. The coverage probability (i.e., the probability that the failure of one
processor can be detected and the system can be reconfigured successfully) is c.
The average reconfiguration delay after a covered failure is 1/δ, and the average
reboot time after an uncovered failure is 1/β. In the CTMC model in Fig. 3
state i means there are i processors working, state Di stands for the case that
there are i processors working, the failure of a processor has been detected and
the system is under reconfiguration, while state Bi means there are i processors
working, the failure of a processor is undetected and the system is undergoing a
reboot. The system is only available in states 1, 2, . . . , n.

According to the numerical results in Fig. 4, system availability is maximized
when there are 2 processors. Therefore, availability will not always increase with
more redundancy, and the coverage probability and reconfiguration delay play
important roles. To realize redundancy benefits, coverage must be near perfect
and reconfiguration delay must be very small.

2.7 “Using Low-Cost Components Can Always Build Highly
Available Systems”

In Section 2.6, we argued that the coverage probability plays an important role
for availability. From industry experience, low-cost components are usually de-
signed with relatively poor fault management because component vendors are
reluctant to increase expense to improve the quality of products. Thus, there
are many cases in which low-cost components are accompanied with lower cov-
erage probability, lower fault-detection probability, longer fault-detection time
and larger no-trouble-found ratio (i.e., one cannot find where the problem is
when the system fails). From Fig. 4, we can conjecture that we might not be
able to build a highly-available system if the coverage probability is low and/or

Ten Fallacies of Availability and Reliability Analysis 199

n

2n−B1n−B

1n−D 2n−D

1

β

δ

. . .

nn (

(n−1) (1−)

n− n− 0

c

n (1−)

λ

μ

μμ

λ

λ−1) c

λ
β

δ

c

λ

c

1 2

Fig. 3. CTMC model for a multi-processor system

(a) Downtime for various mean delays (b) Downtime for various coverage prob-
abilities

Fig. 4. System downtime as a function of the number of processors used

the reconfiguration delay is long, which are the attributes that usually come
with low-cost components. So before choosing a low-cost component, make sure
to assess its reliability and fault coverage probability and ensure that they meet
the availability goal at the system level.

2.8 “A Ten-Times Decrease in MTTR Is Just as Valuable as a
Ten-Times Increase in MTTF”

Equation (13) suggests that a ten-times decrease in MTTR is just as valuable as
a ten-times increase in MTTF. That is correct from system availability point of

200 M. Grottke et al.

μ μμλ λλ

U, TU, F U, A

D, F D, A D, T
T(.)

G(.)

G(.)

R(.) F(.)

R(.)

Fig. 5. MRGP Model for single-user-single-host Web browsing

view. However, for most of the applications running on the Internet, a decrease
in MTTR is sometimes more valuable than the corresponding increase in MTTF,
due to the automatic retry mechanism implemented at various layers of the In-
ternet protocols which masks some short outages and makes them imperceptible
[12].

Figure 5 is an MRGP model for single-user-single-host Web browsing. The cir-
cles in this figure represent the states of our model, and the arcs represent state
transitions. Each state is denoted by a 2-tuple (s, u), where s is the state of the
platform and u is the user status. s = {U, D} includes the situations that the un-
derlying system is up and down, respectively, and u = {T, A, F} contains the user
status of thinking, active, and seeing a failure, respectively. Our model’s state
space is the Cartesian product of s and u, {(U, T), (D, T), (U, A), (D, A), (U, F),
(D, F)}.

The system fails at rate λ (from (U, u) to (D, u)), and is repaired at rate μ
(from (D, u) to (U, u)). After the user has been active for a certain amount of
time, which has a CDF of F (.), she enters thinking state (from (s, A) to (s, T)),
and comes back to active (from (s, T) to (s, A)) after some time (with CDF G(.)).
If she is active and the network is down (state (D, A)), the browser retries after
some time that follows a distribution with CDF T (.). The repair of the system
in state (D, A) will be detected immediately by the automatic HTTP recovery
mechanism. If the retry fails, the user sees a failure (state (s, F)). The user re-
attempts to connect to the Web host, which is represented by transition with
distribution R(.). Note that transitions F (.), G(.), T (.), and R(.) have general
distributions (solid thick arcs in Fig. 5); hence the model described above is not
a CTMC, nor is it an SMP because of the existence of local behaviors, which
are known as state changes between two consecutive regenerative points. For
example, if the failure transition from (U, A) to (D, A) occurs, the user active
transition F (.) is not present in state (D, A). This exponential transition is
known as competitive exponential transition (represented by solid thin arcs), and
its firing marks a regenerative point. On the other hand, the transitions of the
server going up and down in states (U, T) and (D, T) do not affect (add, remove
or reset the general transitions) the user thinking process which is generally

Ten Fallacies of Availability and Reliability Analysis 201

Fig. 6. User-perceived unavailability ĀU , A′
U

distributed. They are called concurrent exponential transitions (represented by
dashed thin arcs), and their occurrences are just local behaviors.

Following the methodology in [12], and using the assumptions on parameters
and distributions [13], we can get the numerical results depicted in Fig. 6. For
comparison purpose, we also constructed and solved the corresponding CTMC
model, i.e., we replaced all the general distributions with exponential distribu-
tions with the same means.

We denoted the user-perceived service availability of the CTMC model by
A′

U . System unavailability was set to a constant 0.007, while the failure rate λ
and repair rate μ varied accordingly. If we incorporate both the failure recovery
behaviors of the service-supporting infrastructure and the online user behaviors
and evaluate the dependency of the user-perceived unavailability on parameters
including the service platform failure rate/repair rate, user retry rate, and user
switching rate, we will find the user-perceived unavailability very different from
the system unavailability.

For Web applications, the user-perceived availability is more sensitive to
the platform repair rate; i.e., for two systems with same availability, the one
with faster recovery is better than the one with higher reliability from an end
user’s perspective. We also found that the CTMC model overestimates the user-
perceived unavailability by a significant percentage.

2.9 “Improving Component MTTR Is the Key to Improve System
Availability”

This fallacy results from a common misunderstanding of the steady-state avail-
ability formula (13): If we maintain the MTTF invariant (e.g., by not investing
in more reliable components) then we can still improve system availability by re-
ducing component MTTR, right? Not necessarily, because the MTTF and MTTR
parameters in the system availability formulas are related to system properties,

202 M. Grottke et al.

D

2λ

1

μ

λδ

μ

0 1

λ

2

Fig. 7. CTMC model of a two-component parallel redundant system with fault recovery
delay

not component ones. The system MTTR parameter in a fault-tolerant system, for
instance, will also be a function of the quality of its fault management mechanism.

Consider for instance the fact that any given CTMC model can be reduced
to an equivalent two-state model for the sole purpose of conducting steady-state
analysis using the aggregation technique introduced in [14]. With this procedure
we are collapsing all operational states into a single state, and all failed states
into a single failure state. Failures in the equivalent model happen with rate
λeq and are repaired with rate μeq. Therefore, we can define system MTTF or
MTTFeq as 1/λeq and system MTTR or MTTReq as 1/μeq in reference to the
trivial solution of a two-state availability model provided by (13). The problem
is that these equivalent rates are numerical artifacts with complex formulae that
most of the time cannot be physically interpreted (e.g., there is no simple relation
mapping a system MTTR to component MTTR).

For example, consider a two-component parallel redundant system with a
single shared-repair facility. The availability model is shown in Fig. 7. In the
state transition diagram, state 1D represents the recovery behavior after the
first fault in the system (i.e., the first component failure). All other states are
labeled by the number of failed components. States 1D and 2 are assumed to be
the system failure states in this example. The component failure and repair rates
are λ and μ, respectively. Once the first system fault is triggered, the system
will recover with rate δ. The time the CTMC stays in state 1D represents the
combined time the system’s fault manager needs to react to the first system fault.
A second fault during this sojourn time in state 1D leads the system directly to
the system failure represented by state 2. This event happens with rate λ.

The steady-state solution of the CTMC model in Fig. 7 results in the following
state probabilities:

π0 =
μ2(λ + δ)

2λ2(λ + μ + δ)E
, π1D =

μ2

λ(λ + μ + δ)E
, (35)

π1 =
μ(λ + δ)

λ(λ + μ + δ)E
, π2 =

1
E

, (36)

with

E = 1 +
μ(λ + δ)

λ(λ + μ + δ)
+

μ2

λ(λ + μ + δ)
+

μ2(λ + δ)
2λ2(λ + μ + δ)

. (37)

Ten Fallacies of Availability and Reliability Analysis 203

Equivalent system failure and repair rates can be determined applying the ag-
gregation techniques introduced in [14]. For the system in Fig. 7 we obtain

λeq =
2λπ0 + λπ1

π0 + π1
, (38)

μeq =
δπ1D + μπ2

π1D + π2
, (39)

with system availability given by (14). To better understand the impact of the
equivalent rates on system availability look at the composition of λeq and μeq

in (38) and (39). Take μeq as an example. A typical setting for the parameter
values is: λ ≈ 10−5, μ ≈ 10−1, and δ ≈ 102. Then δπ1D � μπ2 in the numerator
of (39). This shows that the recovery rate δ, not μ, is the key to improving μeq;
thus improving system availability.

This example has illustrated a case where a higher system availability can
be reached much more effectively by increasing the system recovery rate rather
than decreasing the component MTTR.

2.10 “High-Availability Systems Should Have No Single
Point-of-Failure”

Single point-of-failure (SPOF) analysis is one of the traditional practices in re-
liability engineering. Naive interpretation of the topology of reliability block
diagrams or other architectural diagrams may lead to the erroneous perception
that the optimal improvement opportunity (without considering costs) in any
high-availability architecture is always the removal of SPOFs. What the analyst
may fail to realize is that the structure of the system is just one of many factors
that determine the importance of a component in a high-availability system.
Other determining factors are for instance the reliability/unreliability (or avail-
ability/unavailability) of the system components, the mission time, and target
availability. Besides, the adoption of hierarchical modeling approaches may also
lead to confusion. For instance, subsystems that appear as SPOFs in high-level
diagrams may in fact correspond to highly redundant component structures.

Importance theory, a concept introduced by Birnbaum [15] in 1969, provides
superior criteria than SPOFs alone for objective placement of redundancy. The
reasoning behind the theory is that during the design of a system, the choice
of components and their arrangement may render some components to be more
critical with respect to the functioning of the system than others. The first quan-
titative ranking metrics proposed were the structural importance and Birnbaum
component importance.

The structural importance of a component establishes the probability that
the system shall fail when the component fails, i.e., the component is critical
for system operation. Similar to an SPOF analysis, structural importance allows
us to consider the relative importance of various components when only the
structure of the system is known, but no other information is available.

When we do have additional information, improved measures such as the Birn-
baum component importance provide a better framework to identify improvement

204 M. Grottke et al.

opportunities to the system. For instance, when we additionally know the individ-
ual reliability of system components, we can compute the Birnbaum component
importance. Semantically, this new metric represents the rate at which the system
reliability improves as the reliability of a particular component improves. Another
way of interpreting the Birnbaum importance metric is the probability that at a
given time the system is in a state in which the component is critical for system op-
eration. The larger the Birnbaum importance measure is, the more important the
component is, in agreement with the intuition that a component that is frequently
critical should be considered important.

To exemplify the distinction of both importance measures, consider the series-
parallel system represented by the reliability block diagram in Fig. 8.

c
1

c

c

2

3

Fig. 8. Series-parallel reliability block diagram

The system is operational as long as component c1 is functioning together with
at least one of the two parallel components. Just based on the block diagram, we
can determine, using the methods in [16] for instance, that the structural impor-
tance of c1 is three times larger than those of either c2 or c3. This is an outcome
that agrees with the intuition that series components are more fundamental to
system reliability than parallel components, matching the SPOF reasoning. Now
let us assume that we also know the intrinsic reliability of the system compo-
nents. Suppose that the intrinsic reliability of the series component is 90% for
a given mission time T , while the reliability of the parallel components are just
30% for the same mission time. Then, one can determine, using also the meth-
ods in [16] for instance, the Birnbaum importance of the components to be 0.51
for c1, and 0.63 for the other two components. Therefore, the analysis indicates
that components c2 and c3 should be the target of improvements (contrary to
the results of a SPOF analysis) because at time T there is a 63% probability of
the system being in a state that the functioning of these components is critical.
For a comprehensive survey of other importance measures see [17].

3 Conclusions

Modern society and economy have been posing an increasingly imperative de-
mand on the availability and reliability of computer systems and computer net-
works. The so called “24x7” (24-hours-a-day-and-7-days-a-week) requirement for
these systems presents an unprecedented technical challenge. However, seemingly
well-known concepts like availability and reliability are sometimes misunderstood

Ten Fallacies of Availability and Reliability Analysis 205

even by professionals; such misunderstandings may eventually hinder advances
in designing and deploying high-availability and high-reliability systems. This
paper introduced ten fallacies existing in availability and reliability analysis and
traced them back to their theoretical flaws. The first five fallacies address mis-
conceptions related to R&A modeling and analysis, while the remaining ones
provide insights for system engineers and companies focusing on system level
integration.

References

1. Barlow, R.E., Proschan, F.: Statistical Theory of Reliability and Life Testing -
Probability Models. Holt, Rinehart and Winston, New York (1975)

2. Leemis, L.M.: Reliability: Probability Models and Statistical Methods. Prentice-
Hall, Englewood Cliffs (1995)

3. Patterson, D.A., Gibson, G.A., Katz, R.H.: A case for redundant arrays of inex-
pensive disks (RAID). In: Proc. SIGMOD Conference, pp. 109–116 (1988)

4. Trivedi, K.S.: Probability & Statistics with Reliability, Queueing, and Computer
Science Applications, 2nd edn. John Wiley and Sons, New York (2001)

5. Schroeder, B., Gibson, G.A.: Disk failures in the real world: What does an MTTF
of 1,000,000 hours mean to you? In: Proc. 5th USENIX Conference on File and
Storage Technologies (2007)

6. Hald, A.: Statistical Theory with Engineering Applications. John Wiley and Sons,
New York (1952)

7. Fricks, R.M., Ketcham, M.: Steady-state availability estimation using field failure
data. In: Proc. Annual Reliability and Maintainability Symposium 2004, pp. 81–85
(2004)

8. Grottke, M., Trivedi, K.S.: On a method for mending time to failure distributions.
In: Proc. International Conference on Dependable Systems and Networks 2005, pp.
560–569 (2005)

9. Trivedi, K.S., Muppala, J.K., Woolet, S.P., Haverkort, B.R.: Composite perfor-
mance and dependability analysis. Performance Evaluation 14(3 & 4), 197–216
(1992)

10. Wang, D., Fricks, R., Trivedi, K.S.: Dealing with non-exponential distributions in
dependability models. In: Kotsis, G. (ed.) Performance Evaluation - Stories and
Perspectives, pp. 273–302. Österreichische Computer Gesellschaft, Wien (2003)

11. Trivedi, K.S., Sathaye, A., Ibe, O., Howe, R.: Should I add a processor? In: Proc.
Twenty-third Hawaii International Conference on System Sciences, pp. 214–221
(1990)

12. Choi, H., Kulkarni, V.G., Trivedi, K.S.: Markov regenerative stochastic Petri nets.
Performance Evaluation 20, 335–357 (1994)

13. Xie, W., Sun, H., Cao, Y., Trivedi, K.S.: Modeling of user perceived webserver
availability. In: Proc. IEEE International Conference on Communications, vol. 3,
pp. 1796–1800 (2003)

14. Lanus, M., Lin, Y., Trivedi, K.S.: Hierarchical composition and aggregation of
state-based availability and performability models. IEEE Trans. Reliability 52(1),
44–52 (2003)

206 M. Grottke et al.

15. Birnbaum, Z.W.: On the importance of different components in a multicompo-
nent system. In: Krishnaiah, P.R. (ed.) Multivariate Analysis - II, pp. 581–592.
Academic Press, New York (1969)

16. Henley, E.J., Kumamoto, H.: Reliability Engineering and Risk Assessment.
Prentice-Hall, Englewood Cliffs (1981)

17. Wang, D., Fricks, R.M., Trivedi, K.S.: Importance analysis with Markov chains.
In: Proc. Annual Reliability and Maintainability Symposium, pp. 89–95 (2003)

Analytical Availability Assessment of IT Services

Miroslaw Malek1, Bratislav Milic1, and Nikola Milanovic2

1 Institut für Informatik, Humboldt-Universität zu Berlin
{malek,milic}@informatik.hu-berlin.de

2 Berlin University of Technology
nmilanov@cs.tu-berlin.de

Abstract. The often neglected problem in the service availability
analysis is mapping between ICT-infrastructure and service-level avail-
ability. We present an approach which allows to map ICT-infrastructure
elements to services, and to analytically assess steady-state, interval and
user-perceived service availability, based on failure distributions of ICT-
elements that implement a composite service. In case that full topology
or all failure distributions of ICT-infrastructure elements are unknown,
we provide means to estimate upper and lower availability bounds.

1 Introduction

The rapid networking expansion and convergence of computing and communica-
tion infrastructures make the availability of IT-based services (e.g., telecommuni-
cation, software or storage services) the central point in design of service-oriented
IT systems. Even today, services are simply expected to be delivered on demand,
and this requirement will be even more important in the near future.

Several methodologies have been established to assess service availability: an-
alytical, quantitative and qualitative. Quantitative assessment is based on mea-
surements. Whereas it has proven itself in several areas (e.g., hardware in form
of benchmarks and testing), it is difficult to apply it to services because of the
lack of adequate metrics and instrumentation (see Page 217). Qualitative avail-
ability assessment is performed informally (e.g., questionnaires and interviews)
and assigns an availability class to the system (service). The qualitative results
are easy to misinterpret, difficult to compare and depend heavily on the consul-
tant performing the analysis. Analytical methods model services and calculate
or simulate their availability.

Up to now, classical analytical methods have been applied to determine service
availability with mixed success, partially because many approaches failed to
incorporate the interdependencies between users, underlying ICT infrastructure
and services. The goals of this paper are:

– Given availability definition at the ICT-level to define availability at the
service-level

– Investigate functional dependency between availability at the ICT-level and
service-level using an analytical model-based approach

T. Nanya et al. (Eds.): ISAS 2008, LNCS 5017, pp. 207–224, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

208 M. Malek, B. Milic, and N. Milanovic

2 Related Work

Service availability is drawing lots of attention in research community and in
industry. Various methodologies are developed for building highly available sys-
tems. The Service Availability Forum (SAF) [1] is a consortium that develops
high availability and management software interface specifications. Buskens and
Gonzalez [2] present a high availability middleware and Immonen and Niemela
[3] survey methodologies developed for reliability prediction of component based
software architectures. However, these and other similar methodologies are in-
tended for development and they are not applicable to availability evaluation of
existing, already deployed services.

In [4] we carried out a detailed study of methods and tools that can be used for
availability evaluation. Our conclusion is that IT service availability assessment
is tackled either by the general purpose modeling methods and tools that are pre-
ferred in the research community, or by industry-oriented process management
tools that support best practice frameworks such as CobiT and ITIL.

The general purpose modeling methodologies like Markov chains, Petri and
Stochastic Activity Networks enable very precise availability assessment. The
tools that support them are numerous: Isograph’s Reliability Workbench suite
[5], Moebius [6], SHARPE [7], OpenSesame [8], etc. Some of the tools specialize
in a certain application area. For instance, Network Availability Program (NAP)
[9] produced by Isograph is intended for availability and reliability assessment in
communication networks. The NAP studies how network element failures impact
the data flow between source and target nodes in the network.

Such tools and models are unable to dynamically adapt to changes in the IT
infrastructure. They require experienced personnel to build and verify a model,
requiring lots of man-hours for a single model. Even a minor change in the IT
infrastructure requires the re-evaluation of the model, as it can be invalidated
by introduced changes. The financial costs of such approach are immense and
in practice it is rarely employed, apart from dedicated mission-critical systems,
like flight control systems.

Industry has responded by introducing best practices that help in management
of information systems. Most notable are Information Technology Infrastructure
Library - ITIL [10] and Control Objectives for Information and related Technol-
ogy - CobiT [11]. ITIL is technology oriented and provides a detailed description
for a number of important IT practices, tasks and procedures. CobiT is of higher
importance for managerial purposes as it bridges the gap between business and
IT, and explains interrelations.

The process management tools support ITIL and CobiT frameworks. They
are focused on direct measurement and checking of infrastructure status – which
systems are operational and which are not, is there an overload situation in
the network, etc. Typically they include a Configuration Management Database
(CMDB) system as well, that keeps track of assets in the infrastructure and their
configuration. Notable process management tools are IBM’s Tivoli [12], HP’s
Mercury [13], Fujitsu’s Interstage [14]. Their main drawback is that they are only
measurement based. As the availability is user perceived and network topology

Analytical Availability Assessment of IT Services 209

dependant (as shown in Section 4), it can happen that the monitoring application
indicates high availability while the real clients are actually experiencing low
service availability.

In the research community, service availability was treated either broadly or
in a very specialized fashion. Dahlin et al. [15] investigate the service availability
in WAN networks. They assume that service is available as soon as the client and
server are able to communicate and ignore other requirements that a service has
to fulfill beside the connectivity. Bulka [16] analyzes reliability of optical (FDDI)
token ring networks using fault trees completely ignoring the services deployed
in such networks. Jiang and Schulzrinne [17] evaluate availability of voice over
IP service with regard to several metrics (call success rate, call abortion rate,
etc.) but their approach cannot be generalized to other types of services.

Wang and Trivedi [18] increase detail of study of service availability by pre-
cisely modeling both system and user behavior and apply the method on a VoIP
system. The model is detailed, but it is developed by hand and it ignores client
availability, network topology and availability.

3 Reference Architecture and Fault Model

We use the standard 3-layered architecture, such as presented in [19], to ad-
dress the mapping between ICT- and service-level availability properties. In this
section we briefly describe the architecture and then present the fault model.

The architecture comprises ICT-infrastructure, service and business process
(BP) levels (Fig. 1). BP consists of a set of activities that are performed in coor-
dination in an organizational and technical environment. The activities jointly
realize a business goal. The coordination between activities is achieved by an ex-
plicit process representation using execution constraints. BP is described using
a workflow, while BP activities are enacted by services. Services are elements
of workflows. The most general definition of a service is that an IT-service is
a meaningful activity (e.g., computing a well-defined task) that a software or
hardware element performs on request of another software element, hardware
element or a human user [20]. We will adopt a more technical definition where
IT-service is characterized by three parts: offered functionality, input and out-
put messages, and interface address or port reference [21]. A service is visible
to the outside world through its interface description, which forms a contract
between the client and the service itself [22]. A contract describes service re-
quirements (preconditions) and service deliverables (postconditions). A contract
(also known as service level agreement – SLA) may not include only functional
(e.g., parameter) constraints, but also non-functional properties such as avail-
ability, security, timeliness. In order to perform their functions, services rely (are
based on) mostly on the ICT-infrastructure (possibly also on people). ICT rep-
resents convergence of computational and communication infrastructures and is
represented by hardware (such as computers and networks) and heterogeneous
applications using that hardware. While there are numerous possibilities to de-
scribe or model ICT infrastructure with respect to a given property, several

210 M. Malek, B. Milic, and N. Milanovic

Composite Service

...

Technical Infrastructure
Layer

Software Layer

Business Process

Human Interaction
Workflow

System Workflow

User Interaction
Activity

Communication

ICT Component

System Activity

Atomic Service

Manual Activity Presentation

Deployment

Transaction

Workflow

Network

Storage

Service

Activity

Data

elementOf1..* 1..*

contains 1..*

composes

1..*

describedBy

enacts

1..*

basedOn

1..*

1..*

Fig. 1. Reference Architecture

modeling approaches have already been established for modeling availability,
such as reliability block diagrams, fault trees, Markov chains or Petri nets.

We focus on the relationship between ICT-infrastructure and service avail-
ability and do not consider business process availability. Hence we define the
following fault model.

Correct service is delivered when the service implements the required system
function [23]. A service failure is an event that occurs when delivered service de-
viates from correct service. A service fails either because it does not comply with
its contract (functional and non-functional specification) or because the specifi-
cation did not adequately describe the service function. The period of incorrect
delivery is service outage. The transition from incorrect service to correct ser-
vice is service restoration. While service availability can be defined for abstract
services (process descriptions) it can be calculated for service instances only,
that is, for services which are bound to concrete ICT elements. Service behavior
is defined as composite (transactional) behavior of the ICT-elements a service
is based on. The deviation from correct service may assume different forms or
service failure modes. We identify the following failure modes of a service:

– Temporal: a service did not meet a deadline. A service will not respond on
time if 1) a subset of ICT-elements it is based on does not respond on time; 2)
all ICT-elements respond on time, but synchronization exceeds the deadline;
3) there is a deadlock in synchronization.

– Value: a service responded with incorrect value. A service will respond with
incorrect value if 1) a subset of ICT-elements it is based on delivers incorrect

Analytical Availability Assessment of IT Services 211

values; 2) data and control flow between ICT-elements are faulty, e.g., a
wrong parameter value has been passed to the ICT-element.

Using the failure modes, availability (understood as readiness for correct ser-
vice) can be defined at the following three levels:

– Interval service availability is the number of correct service invocations over
a number of total service invocations for a given time interval (e.g., one hour
or one day).

– Steady-state service availability is the expected availability of a service over
its lifetime and is defined as service uptime over service lifetime, for all users.

– User-perceived availability is the number of correct service invocations over
a number of total service invocations, for a given time interval (interval user-
perceived availability) or over service’s lifetime (steady-state user-perceived
availability) invoked by a particular user. It is highly correlated with service
load (distribution of user requests over time).

Furthermore, we define required availability, which represents target service
availability that ICT infrastructure has to deliver/match, and provided availabil-
ity, which is given availability of the particular ICT infrastructure. One of the
benefits of the proposed solution is the ability to match provided and required
availability for services deployed on a given infrastructure.

Based on these preliminaries, the following section presents an approach to
analytically determine service availability based on the failure distributions of
the ICT-elements a service is based on.

4 Service Availability Assessment

Services are based on the ICT components from the software and technical
infrastructure layer. The following properties characterize ICT-to-service
interaction:

– Services can be arbitrarily complex. In order to describe the functionality of
a real-world service, a human is required to extract service description from
specification or standards.

– Large set of services, such as e-mail, web, database access is standardized in
enterprise environments.

– Infrastructure on which services are deployed, like network topology, quality
of equipment, skill of maintenance personnel, environmental impacts (e.g.,
quality of air conditioning or power supply), differ greatly from one enterprise
to another.

Our proposal is to describe services using an existing process modeling lan-
guage (e.g., BPMN [19]) and then to map it to the provided ICT-infrastructure,
which is managed using a configuration management database (CMDB) tool
such as ECDB [24]. This is illustrated in Figure 2: e-mail service always includes
the same steps that have to be performed, but different enterprises have different
infrastructures that determine the actual service availability.

212 M. Malek, B. Milic, and N. Milanovic

Fig. 2. E-mail Service Deployed in Different Infrastructures

4.1 ICT-Service Mapping

The proposed methodology for mapping services to the ICT building blocks of an
enterprise is created in such manner that it can be integrated into a tool (details
are in Section 5) that afterwards performs online availability assessment. Most of
the steps are automated, so the tool can adapt to the changes in infrastructure or
service functionality and calculate availability that represents the actual state of
the infrastructure/network without need for human intervention. The mapping
consists of the following steps:

1. Services of importance for the enterprise are identified. Their required avail-
ability is defined. The information is taken from qualitative analysis (CobiT,
ITIL) or defined by the technical management.

2. A service is described in a high-level language (e.g., BPMN). Descriptions of
standardized services are supported by default in the tool that we are devel-
oping. The overhead introduced by this step is limited, because the human
effort is required only for the first description of a service and only in case
that the service is unknown to the tool. Important benefit of the approach
is that the maintenance personnel does not have to learn the sophisticated
modeling techniques and languages nor to update the model each time the
ICT infrastructure changes.

3. A CMDB system is responsible to collect the infrastructure data: equipment
and atomic services present in network and their availability statistics. For

Analytical Availability Assessment of IT Services 213

instance, in ECDB that is responsibility of Nmap and Nagios tools. As the
output, CMDB provides an infrastructure graph (see Figure 3, left).

4. An infrastructure graph is transformed into a connectivity graph. It inte-
grates computing and communication infrastructure by adding communica-
tion links to the computing nodes (Figure 3, right).

5. Steps of service execution (BPMN activities) from service description are
mapped to the connectivity graph. Each step in execution has its source S
(that initiates the step) and destination D (that performs it) in the con-
nectivity graph and we have to find all paths between S and D. The in-
dividual source-destination paths are transformed to Boolean equations by
applying & (AND) operator between nodes that belong to the same path.
Multiple paths between S and D are joined using operator || (OR). The re-
sulting Boolean equations are minimized before they are transformed to
an availability model. Existing tools, such as Mathematica [25], can be
used for this purpose. For instance, let us assume that mail server is de-
ployed on host mail.enterprise.com, the client client.enterprise.com can
access it using the routers R1 and R2 or using router R3. That gives us:
client&(R1&R2)&mail||client&R3&mail = client&((R1&R2)||R3)&mail.

6. The mapped service description is transformed to a formal model (this paper
demonstrates the usage of Fault Trees and Reliability Block Diagrams).1

7. A dedicated (third party) simulator/solver computes the formal model, cal-
culates provided availability which is compared with the required availabil-
ity. If required availability is not met, the person in charge is notified. This
step closes the cycle by returning the actual availability information to the
technical management that initiated the whole process.

The first step is human-dependant but it will be performed only once per
service, when it is added to the enterprise. The second step is optional and as
the knowledge base of the tool grows it will become template-based. The steps
three through seven can be automated and they will be executed online: e.g., a
change in the infrastructure triggers the update of the CMDB which initiates
the new availability assessment.

Step 5 in the algorithm requires identification of all paths between two nodes
in a graph. The algorithm that finds them is not difficult to implement, using
recursion. Its complexity and execution time depend on the graph structure – as
the number of loops in the topology increases, the algorithm complexity grows.
In the worst case, when a graph is the complete graph (each two vertices are
connected by an edge) the time/space complexity of the algorithm reaches O(n!).

In general, such complexity is prohibitive. However, the situation in real net-
works is computationally feasible for majority of existing intranets as they are
mostly tree-like structure with limited number of loops in the topology. The
loops are formed by the routers and their count in the network is limited. A
moderate number of network switches are connected to the router and the nu-
merous end-hosts are then connected to switches creating tree-like structure.
1 As there exists a bijective correspondence between RBD and FT, all examples in

this paper are formalized using RBD only.

214 M. Malek, B. Milic, and N. Milanovic

Such sparse structure is favorable for the algorithm and its complexity remains
polynomial (for a tree it is linear).

4.2 Calculating Availability of an E-Mail Service

We will demonstrate the approach proposed in the Section 4.1 using e-mail
service as an example to calculate steady state user-perceived availability. The
example is based on the SMTP protocol defined in RFC 2821 [26]. We have
chosen e-mail since it is ubiquitous communication service and is present in every
modern enterprise. The availability of e-mail service is evaluated for two users in
order to show that availability is not only the function of component availability
but also of infrastructure topology and user location within the topology.

The first step in availability estimation is to define the service of interest and
its required availability. Let us assume that management has determined that
availability of the e-mail service should be 0.9985.

The next step is to provide abstract service description. We will use ser-
vice description given in Figure 2. Service description is then mapped to the
existing infrastructure elements. CMDB provides the infrastructure graph and
component availability statistics (Table 1). The next step is to transform the in-
frastructure graph to the connectivity graph. If CMDB provides sufficient detail
level, there is no need for this transformation – the data from CMDB can be
directly used. Figure 3 shows both representations of the infrastructure.

Fig. 3. Infrastructure Graph (Extracted from CMDB) and Transformation to Connec-
tivity Graph

The abbreviations have the following meaning: Client i – CLi, Mail Server –
MS, Routers – Ri, Channel – CHi, Out1 and Out2 are connections to Internet
Service Providers of the enterprise. A channel is an abstraction that includes
the switches and/or network adapters/links that are placed between routers
and hosts. The channels are introduced for simplicity reasons – the goal of this
section is to demonstrate the approach without going into unnecessary details.
The channels are depicted in Figure 3 by dotted lines.

Based on the SMTP description from Figure 2 and connectivity graph from
Figure 3, we map the service execution steps to paths in the connectivity graph.

Analytical Availability Assessment of IT Services 215

In order to send an e-mail, client has to resolve address of the mail server. It
is common that hosts in a network use two DNS servers, primary and secondary:

CL1 → DNS :
(CL1&CH1&R1&CH2&DNS1) ‖ (CL1&CH1&R1&CH2&CH3&DNS2) =
CL1&CH1&R1&CH2&(DNS1 ‖ (CH3&DNS2)
and
CL2 → DNS :
(CL2&CH9&R2&CH3&CH4&DNS1) ‖ (CL2&CH9&R2&CH4&DNS2) =
CL2&CH9&R2&CH4&(DNS2 ‖ (CH3&DNS1)
The clients now establish a connection with SMTP server and send the e-mail:
CL1 → MS :
CL1&CH1&R1&CH2&CH3&CH4&R2&CH5&MS
CL2 → MS :
CL2&CH9&R2&CH5&MS

In case that e-mail recipient is within the enterprise, the following steps would
not be performed: the e-mail would be stored directly to disk system by the
SMTP server, waiting there for local client to access it. In this example, we
assume that recipient is outside the enterprise and local SMTP server has to
determine the forward SMTP server. This requires a DNS query:

MS → DNS :
(MS&CH5&R2&CH4&DNS2) ‖ (MS&CH5&R2&CH4&CH3&DNS1) =
MS&CH5&R2&CH4&(DNS2 ‖ CH3&DNS1)

The last step is to dispatch the e-mail to the outside server. Since we can
neither measure nor influence the availability of the Internet and outgoing (re-
ceiving) SMTP server, we evaluate availability up to the point where e-mail
leaves the network of the enterprise:

MS → OUT :
(MS&CH6&R3&CH7&OUT1) ‖ (MS&CH6&R3&CH8&OUT2) =
MS&CH6&R3&(CH7&OUT1 ‖ CH8&OUT2)

For the successful e-mail service execution, all these steps must be performed
in series. The resulting expressions are simplified by applying the idempotence,
associativity and distributivity rules of operators & and ‖:

CL1 : (CL → DNS)&(CL → MS)&(MS → DNS)&(MS → OUT) =
CL1&MS&R1&R2&R3&CH1&CH2&CH3&CH4&CH5&CH6&
(DNS1 ‖ DNS2)&(CH7&OUT1 ‖ CH8&OUT2)
CL2 : (CL2 → DNS)&(CL2 → MS)&(MS → DNS)&(MS → OUT) =
CL2&MS&R2&R3&CH9&CH4&CH5&CH6&(CH3&DNS1 ‖ DNS2)&
(CH7&OUT1 ‖ CH8&OUT2)

The obtained expressions can be directly transformed into Fault Trees (FT)
or to Reliability Block Diagrams (RBD). For demonstration purpose, we have
chosen to use RBD (Figure 4). RBD methodology can calculate the steady state
availability, but if interval availability is required as the evaluation result, a

216 M. Malek, B. Milic, and N. Milanovic

Fig. 4. Reliability Block Diagrams for the e-mail Service

Table 1. Evaluation Parameters

Router Channel DNS Mail Client Out1 Out2
MTTF 9000 45000 4500 4000 4500 13500 5400
MTTR 1 3 2 2 2 4 6

different formal model is required. The evaluation parameters are in Table 1. The
model was solved in Isograph’s Reliability Workbench and it assumes exponential
distributions for failure and repair processes. The failure (λ) and repair (μ) rates
are constant. Failure and repair rates are calculated from MTTF and MTTR as
λ = 1

MTTF and μ = 1
MTTR . The evaluation results are in Table 2.

Required and user-perceived provided availability can be now compared. The
provided availability of Client 1 (calculated as 1−Unavailability) is 0.99834, and
provided availability of Client 2 is 0.99858. As our required availability is 0,9985,
it is clear that e-mail service does not provide required availability to Client 1.

Since we may already be using measurement-based methods to evaluate avail-
ability of individual infrastructure elements, like routers or servers, it could be
tempting to claim that the same, measurement based approach should be used
for availability of services. However, as the user-perceived availability is network
topology dependant and it differs from one client host to another, that implies

Analytical Availability Assessment of IT Services 217

Table 2. Evaluation Results

Precise for CL1 Precise for CL2 Lower Intermediate Upper
MTTF 1060 1280 662 1240 6.1 e+22
MTTR 1.79 1.83 2.37 1.59 0.293

Unavailability 0.00166 0.00142 0.00322 0.00127 3.5 e-24

Fig. 5. Connectivity Graph After Change in the Infrastructure

that we should have to install a monitoring application on every client host in
the network for every monitored service. The overhead introduced through in-
stallation of monitors on each client host, for every service the client is using,
would be rather extensive and not very practical.

Furthermore, for some IT services, such as e-mail where responsibility for
service execution is delegated through the network, it is not straightforward to
estimate the availability by counting the success rates since measurements at in-
dividual points (on a server or on client) ignore the unavailability introduced by
other elements in the infrastructure. If e-mail service success ratio is measured
on client only, the availability monitor cannot detect situations where e-mail
cannot leave the server because the Internet connection is not functional. Sim-
ilarly, if monitor is placed on SMTP server only, it is not able to detect events
when client cannot connect to the server. Therefore, precise service availability
assessment through measurement requires monitoring of progress of individual
e-mails through the IT infrastructure (outgoing e-mail is served once it leaves
the enterprise, incoming e-mail once it reaches a client).

Our approach requires less effort for maintenance and provides additional
advantage: in case of planned changes in the IT infrastructure, the impact of
changes on availability can be estimated prior to implementation. For instance,
if we move DNS1 server so that it is in the same subnetwork as the mail server
(Figure 5), the availability measure for the first client remains the same but
the availability of the second client increases to 0.99865. Purely measurement
based approach is not able to predict the impact of infrastructure changes on
availability.

218 M. Malek, B. Milic, and N. Milanovic

4.3 Total Service Availability

The user-perceived availability of each client is not equivalent to the total ser-
vice availability. Given that we have already calculated steady state or interval
service availability Ai for each client i, we investigate how to derive total service
availability.

Service availability is the mean value of the user perceived availabilities (for
all clients):

AS =
∑n

i=1 Ai

n
(1)

where n is the number of clients (users) and Ai are either steady state or interval
user-perceived availabilities.

Equation 1 assumes that all clients use the service equally. It can be made
more precise by weighing it with usage factors:

AS =
n∑

i=1

Ai · ui (2)

Usage factor ui, for a client i, is the number of service invocations made by
the client i over the total number of service invocations. From its definition, it
holds that the sum of usage factors for all users (clients) is equal to one.

For steady-state service availability, Ai is steady state user-perceived avail-
ability. Parameters ui are calculated during the service’s lifetime. In practical
terms, this means that it is determined using statistical methods over a longer
period of time.

If Equation 2 is used to calculate interval service availability, Ai represents
interval user-perceived availability. For interval availability, ui is recorded for the
observed interval, within which service availability is to be derived.

The impact of parameter selection to total availability is illustrated in Table 3.
As the usage factor of CL1 is increased, service availability decreases since client
1 has lower steady state user-perceived availability. This demonstrates how usage
factors balance total service availability in case where clients don’t invoke the
service and access underlying resources evenly.

Table 3. E-mail Service Availability in the Enterprise for Different Values of Parameter
ui. ACL1 = 0.99834, ACL2 = 0.99858

u1 u2 As

0.5 0.5 0.99846
0.6 0.4 0.998436
0.9 0.1 0,998364
0.1 0.9 0,998556

Analytical Availability Assessment of IT Services 219

4.4 Working with Incomplete Data

An implicit assumption of the proposed method is that complete network topol-
ogy, as well as availability of individual components, are known. Although many
methods for determining service availability make this assumption, in practice
this is frequently not the case. The following cases of incomplete data can be
distinguished:

Incomplete service description or network topology. In case that service
description (functionality) or the network topology are unknown, but the ICT-
components on which the service depends are known as well as their availabilities,
the lower availability bound can be determined assuming that all components
are placed in series:

LOWER : CL&MS&DNS1&DNS2&R1&R2&R3&OUT1&OUT2

This model is unaware of communication channels and it does not include
them. Similarly, the upper availability bound can be estimated assuming that
all elements are placed in parallel:

UPPER : CL ‖ MS ‖ DNS1 ‖ DNS2 ‖ R1 ‖ R2 ‖ R3 ‖ OUT1 ‖ OUT2

Finally, if the service description and component availabilities are known, but
the exact topology of the network is unknown, availability can be estimated as:

INTERMEDIATE : CL&MS&(DNS1 ‖ DNS2)&R1&R2&R3&(OUT1 ‖
OUT2)

The approximate service availabilities are in Table 2. The upper availabil-
ity bound is of no practical use since it is very close to one. Lower bound is
considerably lower than the actual availability, as expected. Intermediate model
slightly overestimates the availability but it is very close to the precise value,
considering that it does not utilize the network topology information. Still, this
particular intermediate model example should be taken with caution since the
difference is topology-dependent and may be much larger for other infrastructure
configurations.

The amount of knowledge that we have about the network and the service
influences other metrics of importance, apart from availability estimation. The
Fussell-Vesely [27] metric determines the probability that particular component
has contributed to the system failure, given that the system has failed. The
metric is important since it provides guidelines to the network administrator
where to incorporate the potential improvements in order to obtain the largest
availability increase. Table 4 shows the differences observed in Fussell-Vesely
metric for different levels of system knowledge:

– If complete information is known, according to FV metric, the administra-
tor should improve availability of components in the following order: mail
server, client, channels, routers. Other elements have minor impact on the
availability.

220 M. Malek, B. Milic, and N. Milanovic

Table 4. Fussel-Vesely Metric for different levels of system knowledge

CL MS DNS1 DNS2 OUT1 OUT2 R1 R2 R3 CH1-CH6 CH7 CH8
Complete 0.266 0.3 11.7e-4 11.7e-4 15.8e-4 18.3e-4 0.067 0.067 0.067 0.0388 3.74e-5 1.3e-5

Lower 0.133 0.149 0.133 0.133 0.0818 0.271 0.033 0.033 0.033 / / /
Intermediate 0.347 0.39 15.3e-4 15.3e-4 19.3e-4 19.3e-4 0.087 0.087 0.087 / / /

– If service description is known but network topology is unknown, according
to FV metric, the administrator should work in the following order: mail
server, client, routers. The fit between this and the precise evaluation is
good and cannot mislead administrator.

– If neither service nor topology of the network are known, based on the lower-
bound assessment, the administrator should make improvements in the fol-
lowing order: internet connection 2, mail server, DNS servers, client, routers,
internet connection 1. In this case, the metric is completely misleading and
can distract the administrator from the real cause of the problem: precise
analysis has shown that DNS and outbound connections have minor impact
on the e-mail service availability, yet the metric recommends that both of
them should be checked with high priority.

Unknown availability of some components in the network. In case that it
is not possible to determine availability of one or more components in a network
that are used by the evaluated service, clearly, the exact service availability
cannot be calculated. Assuming that availability is unknown for n components,
the availability can be observed as an n-variable function and it can be evaluated
in n-dimensional space. It is necessary to assume the component availability
distribution type or to take a distribution based on previous experience (e.g., if
the availability distribution for one router type is known, in absence of better
data it is to expect that the new router from same producer will have similar
behavior), to vary the distribution parameters and to observe the availability.
This approach is applicable to precise and approximative models from Sections
4.2 and 4.4 but it is highly dependant on human experience and actual behavior
of unknown components.

Quantitative data on system does not exist. It is sometimes required to
make availability assessment even if we are unable to determine/measure IT
component availabilities, services are not described and network topology is un-
known. In such extreme conditions, our and other analytical or simulation based
approaches are not applicable. One possibility is to use qualitative assessment,
based on the best-practice guides like CobiT [11], ITIL [10], BITCOM [28]. The
best practices cover various aspects of IT management, therefore it is necessary
to extract segments that are of importance for the availability, clearly define
questions, interview the personnel in the enterprise and finally interpret the an-
swers. The interpretation can be quantitative or qualitative. For instance:

– Quantitative: [28] lists the expected downtime per year in data centers as
function of environmental factors. For example, if a data center has no re-
dundant power supplies for equipment and air-conditioning, and no power

Analytical Availability Assessment of IT Services 221

generator, it can be expected that it may experience more than 72 hours of
unplanned downtime per year. Another example is the CobiT process DS1
(Deliver and Support) that defines a metric that gives the percent of users
satisfied with service delivery levels. As the CobiT specification does not
define how to measure this percentage, the metric requires careful interpre-
tation.

– Qualitative: Existence of formally defined RACI (Responsible, Account-
able, Consulted, Informed) charts [11] clearly improves information flow in
an enterprise and increases service availability. However, it is not possible to
quantify the availability improvement.

Best practices can be promptly implemented, providing coarse guidelines
where to aim for availability improvement. Still, they are imprecise in comparison
with analytical and simulation methodologies.

5 Tool Prototype

In order to support the mapping process described in Section 4, we are developing
a tool which enables to map elements from the ICT level to services and calculate
service availability. For that purpose, we use a model-based approach based on
Meta Object Facility (MOF) [29]. The concepts of failure modes, availability
and necessary transformations are described at the metamodel (MOF M2) level,
while the instances are described at the model (MOF M1) level. MOF levels are
shown in Figure 6.

C : Service Element

provided-Availability = "C"

D : Business Process
Element

required-Availability = "D"

B : ICT Element

provided-Availability = "B"

A : ICT Element

provided-Availability = "A"

AvailabilityMetaModel

<<component>>

Business Process

T : Transformation

source = A, B

target = C

Service Element

-provided-Availability

Business Process
Element

-required-Availability

ICT Element

-provided-Availability

<<component>>

ICT component

AvailabilityMetric

<<component>>

Service

FaultMetaModel

Transformation

M : Matching

source = C

target = D

Matching

MOF M2

MOF M0

MOF M1

<<matches>><<implements>>

-source

1

-source

1..*

-target

1
-target

1

Fig. 6. MOF-based architecture for tool development

222 M. Malek, B. Milic, and N. Milanovic

The tool architecture is shown inFigure 7.As an input, it accepts service descrip-
tion given in high-level process language (currently BPMN) and infrastructure
data collected from a CMDB (currently ECDB). This requires graphical BPMN
editor and ECDB installation. The main tool is realized using Eclipse Modeling
Framework (EMF) plugin. It generates infrastructure graph, and enables (graphi-
cal) mapping of service description to the ICT infrastructure elements, which
results in a connectivity graph. An XSLT transformation is performed on the con-
nectivity graph, transforming it into formal model description. Currently, we sup-
port transformations to reliability block diagrams and fault trees. The resulting
model is then used as an input to an existing solver (currently Isograph Reliability
Workbench), which computes provided service availability. Required and provided
service availability are then matched, and if discrepancies are found, adequate ac-
tion can be taken (e.g., notification of management that initiates the modification
of ICT infrastructure).

Fig. 7. Service availability assessment tool architecture

6 Conclusion

We presented an approach for analytical service availability assessment, with
special focus on mapping dependencies between ICT infrastructure elements,
users and services. The main advantages, compared with the existing surveyed
solutions, are:

– Independence from the formal model used for analytical availability assess-
ment. A service is modeled at the abstract level, its elements are matched to
the infrastructure elements and the description is then automatically trans-
formed to the target formal model (currently a reliability block diagram or
a fault tree). The important aspect of this approach is flexibility and learn-
ing curve: the underlying model can be changed transparently, while the end
user does not have to have intimate knowledge of complex mathematical for-
malisms used for modeling and solving/simulation. Furthermore, separation
of service and infrastructure description enables automatic updates of service
availability in case the infrastructure changes: it triggers new transformation
and availability evaluation process.

Analytical Availability Assessment of IT Services 223

– Support for user-perceived and overall service availability. We showed how
overall service availability differs from the user-perceived availability, as it
depends on the infrastructure topology, user’s location and priority.

– Quantification of availability improvement. The presented framework can be
used to quantify and compare availability of different implementations of a
system (e.g., implementation of a system that uses the SAF HA interface
specifications versus the implementation that does not support it).

We are, however, aware of the following drawbacks of the proposed solution.
Modeling, in general, is not scalable. Although we remove the necessity that
formal models (such as Markov chains, Petri nets or fault trees) be directly de-
veloped, it is still problematic how to describe large systems, that is, services with
hundreds of states and infrastructures with thousands of nodes. Our current work
focuses on the possibility to marry the three approaches that were mentioned
in the Introduction, namely, to integrate qualitative, quantitative and analytical
definitions, methods, and metrics. This is a non-trivial task, as it is at present
unclear how to develop a unified system that can reasonably well represent mea-
surement results, interview answers and availability values obtained by solving
a formal model. One possible direction is given is Section 4, where qualitative
methods (e.g., CobiT analysis) are used to define required service availability.
Apart from scalability, the issue of transformation to target formal model is,
in our opinion, still not satisfactorily solved. The models we use do not enable
us to describe time-dependent events and to analyze history (state transition).
We are currently investigating transformations to other model classes, such as
Markov chains and stochastic activity networks. Regardless of the mentioned
drawbacks, we consider the question of mapping services to ICT-infrastructure
elements and users, and the ability to analytically calculate service availability
based on information thus obtained, an important step in understanding the
overall problems of availability of service-based IT systems. Finally, the ability
to analytically determine service availability is a crucial step in developing of
methods and tools for assessing business process availability of an enterprise
(see Figure 1), a problem which has not been addressed up to now. We see an
opportunity to connect business process definition with infrastructure topologies
and user profiles using the service layer, based on methods that are analogous
to ones proposed in this work. This could enable us to analytically determine
business process availability.

References

1. Service Availability Forum (2007), http://www.saforum.org/
2. Buskens, R., Gonzalez, O.: Model-Centric Development of Highly Available Soft-

ware Systems. In: Model-Centric Development of Highly Available Software Sys-
tems, pp. 163–187. Springer, Heidelberg (2007)

3. Immonen, A., Niemela, E.: Survey of reliability and availability prediction methods
from the viewpoint of software architecture. Software and System Modeling 7, 49–
65 (2007)

http://www.saforum.org/

224 M. Malek, B. Milic, and N. Milanovic

4. Malek, M., Hoffmann, G., Milanovic, N., Bruening, S., Meyer, R., Milic, B.: Metho-
den und Werkzeuge zur Verfgbarkeitsermittlung. Technical Report 219, Humboldt
University Berlin (2007)

5. Reliability workbench (2007), http://www.isograph-software.com/rwbover.htm
6. Sanders, W.: Moebius Manual (2007)
7. Trivedi, K.: SHARPE 2000 GUI Manual (1999)
8. Walter, M.: OpenSESAME - Simple but Extensive Structured Availability Model-

ing Environment
9. Network Availability Program (NAP) v1.0 Technical Specification (2005),

http://www.isograph-software.com/techspecs/nap32techspec.pdf
10. IT Infrastructure Library (2007), http://www.itil-officialsite.com
11. Cobit 4.1. IT Governance Institute (2007)
12. IBM Tivoli Availability Process Manager (2007), http://www-306.ibm.com/

software/tivoli/products/availability-process-mgr/
13. Mercury Business Technology Optimization Enterprise (2007),

http://www.mercury.com/us/products/
14. Fujitsu Interstage Business Process Manager (2007), http://www.fujitsu.com/

global/services/software/interstage/bpm/index.html
15. Dahlin, M., Chandra, B.B.V., Gao, L., Nayate, A.: End-to-end WAN service avail-

ability. IEEE/ACM Trans. Netw. 11(2), 300–313 (2003)
16. Bulka, D.: Fault Tree Models for Reliablitiy Analysis of an FDDI Token Ring

Network. In: Proceedings of the 30th annual Southeast regional conference (1992)
17. Jiang, W., Schulzrinne, H.: Assessment of VoIP service availability in the current

internet. In: Proceedings of the Passive and Active Measurement Workshop (2003)
18. Wang, D., Trivedi, K.S.: Modeling user-perceived service availability. In: Malek,

M., Nett, E., Suri, N. (eds.) ISAS 2005. LNCS, vol. 3694, pp. 107–122. Springer,
Heidelberg (2005)

19. Weske, M.: Business Process Management: Concepts, Languages, Architectures.
Springer, Heidelberg (2007)

20. Krafzig, D., Banke, K., Slama, D.: Enteprise SOA. Prentice-Hall, Englewood Cliffs
(2004)

21. Vogels, W.: Web services are not distributed objects. IEEE Internet Computing
(2003)

22. Milanovic, N.: Contract-based Web Service Composition. PhD Dissertation, Hum-
boldt University Berlin (2006)

23. Avizienis, A., Laprie, J., Randell, B., Landwehr, C.: Basic concepts and taxonomy
of dependable and secure computing. IEEE Trans. Dependable Sec. Comput. (2004)

24. ECDB: An Open Source Approach to Configuration Management (2007),
http://www.cmdb.info

25. Wolfram, S.: The Mathematica Book. Wolfram Media, Incorporated (2003)
26. Klensin, J.: Simple mail transfer protocol. RFC 2821 (2001)
27. Fussell, J.: How to calculate system reliability and safety characteristics. IEEE

Transact. Reliab. 24(3), 169–174 (1975)
28. Betriebssichere rechnenzentren. BITKOM Consortium (2006)
29. OMG: Meta Object Facility (MOF) 2.0 Core Specification (2004),

http://www.omg.org/cgi-bin/apps/doc?ptc/03-10-04.pdf

http://www.isograph-software.com/rwbover.htm
http://www.isograph-software.com/techspecs/nap32techspec.pdf
http://www.itil-officialsite.com
http://www-306.ibm.com/software/tivoli/products/availability-process-mgr/
http://www-306.ibm.com/software/tivoli/products/availability-process-mgr/
http://www.mercury.com/us/products/
http://www.fujitsu.com/global/services/software/interstage/bpm/index.html
http://www.fujitsu.com/global/services/software/interstage/bpm/index.html
http://www.cmdb.info
http://www.omg.org/cgi-bin/apps/doc?ptc/03-10-04.pdf

Author Index

Baldoni, Roberto 1

Ciardo, Gianfranco 20

Dasarathy, Balakrishnan 20
Dohi, Tadashi 26, 110

Fricks, Ricardo M. 187
Fuligni, Stefano 1

Grottke, Michael 20, 187

Hamou-Lhadj, Abdelwahab 155
Hamouda, Ossama 171
Herrmann, Frédéric 142
Horstmann, Ulrich 142

Johansson, Andréas 90

Kaâniche, Mohamed 171
Kanso, Ali 155
Kato, Kazuhiko 129
Khendek, Ferhat 155
Kleber, Ulrich 142

Malek, Miroslaw 17, 207
Maruyama, Hiroshi 13
Matias, Rivalino 20
Matthiesen, Erling V. 171
Mecella, Massimo 1

Milanovic, Nikola 207
Milic, Bratislav 207

Nanya, Takashi 59
Nassu, Bogdan Tomoyuki 59

Okamura, Hiroyuki 110

Parkin, Simon Edward 43
Potter, Richard 129

Rindos, Andy 20

Sârbu, Constantin 90
Schwefel, Hans-Peter 171
Sugiki, Akiyoshi 129
Sun, Hairong 187
Suri, Neeraj 90

Toeroe, Maria 155
Tokuno, Koichi 75
Tortorelli, Francesco 1
Trivedi, Kishor S. 20, 187

Uemura, Toshikazu 26

van Moorsel, Aad 43
Vashaw, Bart 20

Yamada, Shigeru 75
Yamatozaki, Kei 129
Yassin Kassab, Rouaa 43

	Title Page
	Preface
	Organization
	Table of Contents
	The Italian e-Government Enterprise Architecture: A Comprehensive Introduction with Focus on the SLA Issue
	Introduction
	Strategic and Governance Actions
	Overview of SPCoop Enteprise Architecture
	Service Agreements
	Cooperation Domains and Cooperation Agreements
	Repositories for Agreements and Schemas/Ontologies

	Service Level Agreements: A Real Challenge
	Discussion and Future Work

	Challenges and Opportunities for Computer Science in Services Science
	Introduction
	Emergence of Services Science
	Opportunities
	Model-Driven Approach to Services
	IT Architecture Supporting Services
	Analytics and Optimization

	Challenges
	Service Dependability
	Understanding and Modeling Human Minds

	Concluding Remarks – The Changing Roles of Computer Science
	References

	Predictive Algorithms and Technologies for Availability Enhancement
	Achieving and Assuring High Availability
	Overview
	Quantified Availability Assurance
	Recovery from Failures Caused by Mandelbugs
	Proactive Recovery and Aging-Related Bugs
	References

	Optimizing Security Measures in an Intrusion Tolerant Database System
	Introduction
	Intrusion Tolerant Database System
	Basic Concept
	Model Description

	Semi-markov Analysis
	Security Measures
	System Availability
	System Integrity
	Rewarding Availability

	Numerical Illustrations
	Parameter Set
	System Integrity
	Rewarding Availability

	Conclusion

	The Impact of Unavailability on the Effectiveness of Enterprise Information Security Technologies
	Introduction
	USB Access Control Solutions
	Digital Rights Management (DRM) Solutions
	Disk Encryption Solutions
	Operating System Solutions
	Discussion of Technologies
	Unavailability Impact Analysis
	Trade-Offs
	Productivity Loss
	Departing Users

	Conclusion

	Interaction Faults Caused by Third-Party External Systems — A Case Study and Challenges
	Introduction
	Scenario Description and a Case Study
	System Model
	Errors Caused by Interaction Faults
	A Case Study

	Challenges for Error Detection
	Implicit Redundancies
	Omissions and Timing Errors
	Sequence Errors
	Message Formatting Errors
	Missing Data
	Data Syntax Errors
	Inconsistent Values
	Action Errors

	Conclusions and Future Work

	User-Perceived Software Service Availability Modeling with Reliability Growth
	Introduction
	Model Description
	Model Analysis
	Distribution of Transition Time of $X(t)$ between State W
	State Occupancy Probability
	Software Service Availability Measures

	Numerical Examples
	Concluding Remarks

	Execution Path Profiling for OS Device Drivers: Viability and Methodology
	Introduction
	Paper Emphasis and Contributions
	Paper Organization

	Related Work
	System Model: The Entailed OS Kernel Components
	Developing the Basis for Code Tracing: The I/O Request Packet (IRP) Interface
	The Processing of I/O Requests
	Mode, Transition and Operational Profile of a Device Driver

	Developing the Basis for Code Tracing: The Functional Interface
	The PE/COFF Executable Format and DLL-Proxying
	Call Strings as Code Path Abstractions

	Identifying Execution Hotspots: Call String Clustering Aspects
	Metrics to Express Call String Similarity
	Cluster Linkage Methods and Agglomeration Coefficient

	Evaluating the Viability of the Execution Profiling Methodology
	Revealing the Execution Hotspots: MDS Plots of the CSs
	Similarity Cutoffs: Testing Overhead Versus Diversity Masking

	Discussion and Results Interpretation
	Conclusions and Future Research Directions

	Analysis of a Software System with Rejuvenation, Restoration and Checkpointing
	Introduction
	Software Availability Modeling
	Model Description
	Formulation of System Availability

	Optimization Algorithm
	Numerical Examples
	Exponential System Failure Time
	Weibull System Failure Time

	Conclusions

	A Platform for Cooperative Server Backups Based on Virtual Machines
	Introduction
	Cooperative Platform for Service Backups
	System Architecture
	Reliable Replication of Virtual Machines
	Service Placement
	Membership

	Experiments
	Experimental Setup
	Replication Overheads
	Virtual Machine Overheads
	Handling Changes

	Related Work
	Conclusions and Future Work

	Platform Management with SA Forum and Its Role to Achieve High Availability
	Introduction
	System Model
	Information Model for Physical Resources
	Information Model for Execution Environments
	Dependencies
	PLM Objects within the Overall AIS Information Model

	Operation Administration and Maintenance
	State Model
	States for Physical Resources
	States for Execution Environments
	Summary State

	Virtualization Support
	Health Checking and Fault Analysis
	Faults of Physical Resources
	Faults of Execution Environments

	Correlation
	Upgrade Support
	Operating System Upgrade
	Hardware Upgrade

	Achieving 5 Nines in Reality
	Reduce the Time to Repair
	Avoid Blaming Hardware as Faulty When It Is Not Faulty

	Summary and Outlook
	References

	Automatic Generation of AMF Compliant Configurations
	Introduction
	AMF Compliant Configurations: Background and Related Work
	Background
	Related Work

	Configuration Generation
	Input Data and Validation
	Type Selection
	Generating the Remaining AMF Entities
	Completing the Configuration Attributes

	The Configuration Generator Tool
	Description of the Tool
	The Tool User Interface
	Application Example

	Conclusions
	References

	Dependability Evaluation of a Replication Service for Mobile Applications in Dynamic Ad-Hoc Networks
	Introduction
	Background
	Scenario Description
	Background on Data Consistency
	Replication Management Problems and Proposed Design Concepts

	Dependability Modeling for Replica Consistency
	GSPN Model for the Replica Consistency Estimation
	Markov Model Derived from GSPN

	Results
	Parameter Values
	Sensitivity Analyses for Replica Consistency
	Service Availability Analyses

	Conclusion and Outlook
	References

	Ten Fallacies of Availability and Reliability Analysis
	Prologue
	Basic Probability Theory Definitions
	Reliability Definitions
	Availability Definitions

	Fallacies
	``Fault Tolerance Is an Availability Feature and Not a Reliability Feature''
	``Availability Is a Fraction While Reliability Is Statistical''
	``The Term `Software Reliability Growth' Is Unfortunate: Reliability Is Always a Non-increasing Function of Time''
	``MTTF Is the Whole Story about Reliability''
	``The Presence of Non-exponential Lifetime or Time-to-Repair Distributions Precludes Analytical Solution of State-Space Based R&A Models''
	``Availability Will Always Be Increased with More Redundancy''
	``Using Low-Cost Components Can Always Build Highly Available Systems''
	``A Ten-Times Decrease in MTTR Is Just as Valuable as a Ten-Times Increase in MTTF''
	``Improving Component MTTR Is the Key to Improve System Availability''
	``High-Availability Systems Should Have No Single Point-of-Failure''

	Conclusions

	Analytical Availability Assessment of IT Services
	Introduction
	Related Work
	Reference Architecture and Fault Model
	Service Availability Assessment
	ICT-Service Mapping
	Calculating Availability of an E-Mail Service
	Total Service Availability
	Working with Incomplete Data

	ToolPrototype
	Conclusion
	References

	Author Index

